
Available online at www.sciencedirect.com
Bioorganic & Medicinal Chemistry Letters 18 (2008) 2491–2494
b-Lactam congeners of orlistat as inhibitors of fatty acid synthase
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Abstract—b-Lactam derivatives of orlistat were prepared and their inhibitory activities toward the thioesterase domain of fatty acid
synthase (FAS-TE) were evaluated using a recombinant form of the enzyme. While in general these derivatives showed lower
potency compared to b-lactones, a reasonably potent, lead compound (�)-9 (IC50 = 8.6 lM) was discovered that suggests that this
class of compounds should be evaluated further.
� 2008 Published by Elsevier Ltd.
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As the sole complex machine responsible for cellular
synthesis of palmitate, human fatty acid synthase1

(FAS) has recently attracted attention as a drug target
in oncology for its well-documented up-regulation in
cancer cells,2 including most carcinomas such as those
of the breast,3 prostate,4 and ovaries.5 The pharmaco-
logical inhibition of FAS has also been shown to en-
hance the effectiveness of current antineoplastic
therapies such as paclitaxel6 and trastuzumab.7 Despite
these promising results, a suitable FAS inhibitor for
clinical use has not emerged.8 Recently, the first FDA-
approved over-the-counter weight-loss medication, tet-
rahydrolipstatin (orlistat), a pancreatic lipase inhibitor
and a reduced form of the natural product lipstatin,
was discovered to also be a potent inhibitor of the thio-
esterase domain of fatty acid synthase (FAS-TE).9,10

This finding led to a renaissance in the synthesis of orli-
stat and congeners,11,12 as it is an important lead com-
pound for further structure–activity relationship (SAR)
studies to identify FAS inhibitors as potential
therapeutics.

In previous synthetics studies toward FAS inhibitors, a
variety of orlistat congeners were prepared using our
ZnCl2-mediated tandem Mukaiyama aldol-lactonization
(TMAL) process as a key step (Scheme 1).12 In addition,
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the structural requirements for inhibition of FAS-TE
and factors for improving solubility, potency, and selec-
tivity were delineated.13

As part of ongoing efforts to develop new b-lactone-
based transformations, we previously reported a mild,
efficient two-step, one-pot method for conversion of b-
lactones to b-lactams based on the method of Miller.14

In conjunction with our ongoing SAR studies of orlistat
targeting FAS, we envisioned that conversion of the b-
lactone core to a b-lactam,15 which of course has a long
history as an effective pharmacophore,16 might impart
greater stability and lead to a new class of FAS inhibi-
tors. Herein, we report the first synthesis of b-lactam
derivatives of orlistat that exhibit inhibition of the re-
combinant form of FAS-TE.

Our strategy for the synthesis of orlistat b-lactams uti-
lized our stereocomplementary SnCl4-promoted TMAL
process.17 This provides the required cis-b-lactones since
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(R1= n-C10H21; R2= n-C6H13) 2

Scheme 1. Key disconnection for the synthesis of orlistat and

congeners employing the TMAL process.
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Scheme 3. Synthesis of b-lactams (�) and (+)-5. Reagents and

conditions: (i) 2, SnCl4, �78 �C, CH2Cl2, 1.5 h, 60%, dr 15:1; (ii)

HF, CH3CN, 0 �C, 78%; (iii) BnONH2; DIAD, Ph3P, 56% over two

steps; (iv) HF, CH3CN, 0 �C, 75%; (v) DMAP, EDCI, N-formylgly-

cine, 80%; (vi) SmI2, THF/H2O, 0 �C, 82%. DIAD: diisopropyl

azodicarboxylate; EDCI: 1-ethyl-3-(3-dimethylaminopropyl)carbodi-

imide); DMAP: 4-dimethylaminopyridine.
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the conversion to b-lactams leads to inversion at the b-
stereocenter of the b-lactone (Scheme 2). We initially
targeted the synthesis of b-lactam (�)-5, which directly
mimics the stereochemistry and substitution pattern of
orlistat. The synthesis commenced with the SnCl4-pro-
moted TMAL reaction with known aldehyde (S)-112

and thiopyridyl ketene acetal 218 to efficiently deliver
the desired b-lactone 3 as a 15:1 mixture of anti/syn dia-
stereomers (Scheme 3). Complete cis-selectivity of the b-
lactone core was verified by analysis of coupling con-
stants (JHa,Hb = 6.5 Hz) as previously described,18

whereas the relative stereochemistry with respect to the
d-center was confirmed by comparison with the known
alcohol 819 after desilylation. The sterochemical out-
come is consistent with Evans’ model for additions to
b-silyloxy aldehydes20 as previously observed for similar
TMAL reactions.18b Next, application of the one-pot
conversion of b-lactones to b-lactams generated the N-
benzyloxy-b-lactam (�)-9.14 Subsequent desilylation
afforded the d-hydroxy-b-lactam (�)-10, which follow-
ing acylation with N-formyl glycine generated ester
(�)-11. Finally, employing SmI2-promoted reductive
N–O bond cleavage of the benyloxy-b-lactam provided
the orlistat-type b-lactam (�)-5.14 In addition, the enan-
tiomeric series was also prepared for comparison pro-
viding b-lactam (+)-5 in comparable yields (not
shown)21 starting from aldehyde (R)-1.

Based on our previous SAR studies with orlistat-deriva-
tives,13 compounds containing shorter side chains at the
b-position often exhibited superior inhibitory activity.
In efforts to determine if this finding translated to b-lac-
tam inhibitors, we targeted the synthesis of b-lactam 6
using a similar strategy (Scheme 4). SnCl4-promoted
TMAL reaction of aldehyde (S)-7 and thiopyridyl ke-
tene acetal 2 afforded the cis-b-lactone 4 along with a
minor diastereomer (not shown, dr 6:1). As with alde-
hyde (S)-7, both diastereomers possessed cis-b-lactones
with differing relative stereochemistry at the d-silyloxy
stereocenter. Instead of doing a tedious separation, the
mixture of diastereomers was carried forward for preli-
minary studies by conversion of the mixture to b-lactam
12 and diastereomer (not shown) via the single-pot pro-
tocol.14 Subsequent desilylation afforded alcohol 13 and
following acylation with N-formyl-LL-valine this pro-
vided ester 14. Reductive N–O cleavage using SmI2 com-
pleted the synthesis of b-lactam 6 (dr 6:1). In addition,
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Scheme 2. Strategy for the synthesis of orlistat-type b-lactam
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Scheme 4. Synthesis of b-lactam derivatives 6 and 15. Reagents and

conditions: (i) 2, SnCl4, �78 �C, CH2Cl2, 49%, dr 6:1; (ii) BnONH2;

DIAD, Ph3P, 44% over two steps; (iii) HF, CH3CN, 68%; (iv) DMAP,

EDCI, N-formylvaline, 80%; (v) SmI2, THF/H2O, 66%; (vi) SmI2, THF/

H2O, 35%.
b-lactam 15 was also obtained (dr 6:1) by reductive re-
moval of the benzyloxy group from b-lactam 13 using
SmI2.

The inhibitory activities of the synthesized b-lactam
derivatives were determined in a biochemical fluorogenic



Table 1. Inhibitory properties of b-lactam derivatives of orlistat to

recombinant FAS-TE

Compound Complement

inhibition

IC50 (lM)

Compound Complement

inhibition

IC50 (lM)

(�)-5 No inhibition (+)-10 61.2

(+)-5 No inhibition (�)-11 68.9

6a —b (+)-11 39.2

(�)-9 8.6 13a 50.5

(+)-9 97.4 14a 58.2

(�)-10 86.8 15a 67.6

a dr = 6:1.
b Inconclusive (see text).
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Figure 1. A representative dose–response curve illustrating the inhibi-

tion of FAS-TE by b-lactam (�)-9 in the fluorogenic assay.
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assay using recombinant FAS-TE applying a protocol
previously described (Table 1).12 Not surprisingly, in
general the b-lactam derivatives showed reduced inhibi-
tory activity compared to orlistat. Most of the b-lactam
derivatives retaining the N-benzyloxy group including b-
lactams 10–11 and 13–14 exhibited only modest activity
with IC50’s ranging from �30 to 100 lM. A clear and
surprising exception was b-lactam (�)-9, which retains
the N-benzyloxy group, a silyl ether and also shares
the same absolute stereochemistry with orlistat. This
derivative showed the highest activity (IC50 = 8.6 lm)
among all the b-lactams studied (Fig. 1). It is also note-
worthy that a shorter chain at the b-position of the b-
lactam, relative to the b-lactone of orlistat, did not show
obvious improvement in inhibition activity as in the case
of b-lactone inhibitors. Surprisingly, neither b-lactam
(+)-5 nor its enantiomer, which is structurally most sim-
ilar to orlistat, showed inhibitory activity, however, this
may be due to reasons of solubility as is the case with
orlistat itself. Unfortunately, inhibitory studies of b-lac-
tam 6 were inconclusive as it failed to exhibit a regular
dose–response in the fluorogenic assay.

In summary, the first b-lactam derivatives of orlistat
were synthesized and their inhibitory activities toward
FAS-TE were evaluated against a recombinant form
of FAS-TE. While in general these derivatives showed
lower potency compared to b-lactones, one b-lactam
(�)-9 possessing a N-benzyloxy-b-lactam was discovered
to have a good potency (IC50 = 8.6 lM) providing evi-
dence that this class of compounds should be evaluated
further as potential inhibitors of FAS.
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