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Long-standing interest in the chemistry of sulfur-containing
amino acids stems from their importance in living and
physiological systems.[1–3] Among sulfur-containing amino
acids, cysteine and penicillamine bearing a thiol group are
of particular interest and have been dealt with in numerous
reports over the past decades.[4–8] Despite the structural
similarity between cysteine and penicillamine other than the
absence or presence of two methyl groups on the b-carbon
atom, their stereochemical configurations in nature are
opposite to each other; the natural cysteine is in the l form
as are other protein-forming amino acids, whereas the natural
penicillamine exists in the d form. In parallel with this fact, d-
penicillamine has been used as a drug for the treatment of
metal metabolism,[8–10] although its l form is highly toxic, even
in a small quantity.[10, 11] In addition, it has been shown that the
mutagenic potency of d-penicillamine is almost the same as
that of l-cysteine.[12] Thus, it appears that the biological
nature of penicillamine corresponds to l-cysteine when it
possesses a d configuration. However, the exact reason why
d-penicillamine behaves like l-cysteine in biological systems
still remains unknown.

In metal coordination systems, cysteine and penicillamine
have been recognized as a multifunctional organic ligand that
can bind to a variety of metal ions through amine, carbox-
ylate, and thiolate groups to form chiral mononuclear and
multinuclear complexes.[13–26] Although a difference in coor-
dination behavior between cysteine and penicillamine toward
a given metal ion has been observed in some cases,[18, 19]

d-
penicillamine commonly induces a chiral effect at a metal
center opposite to that induced by l-cysteine,[20–26] which is
consistent with their opposite d and l configurations. A clear
example is the selective formation of the L configurational
isomer for [Co(d-penicillaminato-N,S)3]

3�,[26b] while the anal-
ogous [Co(l-cysteinato-N,S)3]

3� produces the D isomer under
the same conditions.[26a] Herein we report a remarkable
AuI

3NiII
2 coordination system constructed from cysteine/

penicillamine in combination with NiII and AuI ions
(Scheme 1). In this system, the chiral behavior of the AuI

3NiII
2

complex with l-cysteinate was found to be opposite to that
with l-penicillaminate. This was also the case for analogous

AuI
3CoIII

2 complexes with l-cysteinate/l-penicillaminate,
which were derived from the AuI

3NiII
2 complexes by metal

replacement reactions. As far as we know, such a coordination
system that shows the opposite chiral effect due to l-cysteine
and l-penicillamine has never been reported.[27]

Treatment of Ni(NO3)2 with excess l-cysteine (l-H2cys)
neutralized by Na2CO3 in water quickly produced a dark
brown solution. The electronic absorption and circular
dichroism (CD) spectral measurements indicated the forma-
tion of a mononuclear nickel(II) complex with N,S-chelating
l-cysteinate ([Ni(l-cys-N,S)2]

2� ; Figure 1).[20a,b] When this
reaction mixture was treated with [AuCl{S(CH2CH2OH)2}],
the color of the solution gradually changed to blue within
2 days. Anion-exchange column chromatography (QAE
Sephadex A-25) of the resulting blue solution eluting with
0.2m aqueous NaClO4 gave a single blue band, from which
blue plate crystals of Na5[Au3{Ni(l-cys-N,S)3}2] (Na5-1) were
isolated. X-ray fluorescence spectrometry suggested that Na5-
1 contains Au and Ni atoms in a 3:2 ratio, and its elemental
analytical data were in agreement with the formula for a
compound containing Au, Ni, and l-cys in a 3:2:6 ratio. The
appearance of an intense nCO band at 1586 cm�1 in the IR
spectrum of Na5-1 is indicative of the presence of deproton-
ated COO� groups.[28,29] Octahedral geometry of NiII ions in
Na5-1 was assumed from its electronic absorption spectrum,
which exhibits a near-infrared band at 901 nm with a shoulder
at longer wavelength assignable to 3T2g

!3A2g, as well as a
visible band at 600 nm assignable to 3T1g

!3A2g (Fig-

Scheme 1. Synthetic routes of mononuclear NiII, pentanuclear AuI
3NiII2

(15� for l-cys, 25� for l-pen), and pentanuclear AuI
3CoIII

2 (33� for l-cys,
43� for l-pen) complexes.
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ure 2a).[30,31] Magnetic measurements indicated that Na5-1 is
paramagnetic,[28] which is consistent with the octahedral
geometry of NiII in Na5-1.

The crystal structure of Na5-1 was established by single-
crystal X-ray analysis. As shown in Figure 3a, 15� has an S-
bridged AuI

3NiII
2 pentanuclear structure in [Au3{Ni(l-cys-

N,S)3}2]
5�, in which two {Ni(l-cys-N,S)3}

4� units are linked by
three AuI atoms through S atoms in a linear arrangement.[32]

Each NiII atom is in a fac-N3S3 octahedral environment and is
coordinated by three bidentate N,S-l-cys ligands. Considering
two kinds of stereochemical configurations of the central
unit—D/L for the two octahedral {Ni(l-cys-N,S)3}

4� units and
R/S for the six bridging S atoms—a total of 21 stereoisomers
are possible. Both the {Ni(l-cys-N,S)3}

4� units in 15� adopt the

L configuration, and all the six bridging S atoms have R
configurations, thus giving only the (L)2(R)6 isomer.

A similar reaction of Ni(NO3)2 with l-penicillamine (l-
H2pen) neutralized by K2CO3 also produced a dark brown
solution. As compared in Figure 1, the absorption and CD
spectra of this solution are nearly the same as those of a
brown solution obtained from Ni(NO3)2 and l-cys, indicating
that l-cys and l-pen form the same chiral structure at this
stage. Subsequent treatment of the brown solution with
[AuCl{S(CH2CH2OH)2}] gave a blue solution, from which
purple-blue crystals of K5[Au3{Ni(l-pen-N,S)3}2] (K5-2) were
isolated. X-ray fluorescence and elemental analytical data
implied that K5-2 also contains Au, Ni, and l-pen in a 3:2:6
ratio. The presence of deprotonated COO� groups in K5-2
was confirmed by its IR spectrum, which shows an intense nCO

band at 1591 cm�1. Moreover, the absorption spectral features
of K5-2 are very similar to those of Na5-1, namely a near-
infrared band at 917 nm and a visible band at 588 nm
(Figure 2a).[31] From these results, 25� is assigned as an S-
bridged AuI

3NiII
2 pentanuclear complex with l-penicillami-

nate ([Au3{Ni(l-pen-N,S)3}3]
5�), the structure of which is

analogous to that in 15�. The CD spectrum of K5-2, however,
exhibits a CD curve roughly enantiomeric to that of 15�

(Figure 2b). This observation strongly suggests that 25� has
{Ni(l-cys-N,S)3}

4� units with D configuration.
The direct structural information of this compound was

gained by single-crystal X-ray analysis of Cs2Na3-2, which was
isolated by using Cs2CO3 instead of K2CO3. As shown in
Figure 3b, 25� has an S-bridged AuI

3NiII
2 structure in

[Au3{Ni(l-pen-N,S)3}2]
5� consisting of two octahedral {Ni(l-

pen-N,S)3}
4� units linked by three AuI atoms in a linear

arrangement. Although this S-bridged structure in 25� resem-
bles that in 15�, the two octahedral NiII units have D

configuration and six bridging S atoms are fixed to the S
configuration, thus giving only the (D)2(S)6 isomer. Thus, the
stereochemical configurations about the NiII units and the S
atoms in 25� are all opposite to those in 15�. As expected, the
use of d-penicillamine instead of l-penicillamine selectively

Figure 1. a) Absorption and b) CD spectra of the aqueous reaction
solutions containing [Ni(l-cys)2]

2� (c) and [Ni(l-pen)2]
2� (a).

Figure 2. a) Absorption and b) CD spectra of 15� ((L)2-[Au3{Ni(l-
cys)3}2]

5�, c) and 25� ((D)2-[Au3{Ni(l-pen)3}2]
5�, a) in water.

Figure 3. Perspective views of a) 15� and its [Au3{Ni(l-cys)3}] moiety,
and b) 25� and its [Au3{Ni(l-pen)3}] moiety. Au purple, Ni green, S
yellow, O red, N blue, C gray. Hydrogen atoms are omitted for clarity.
Dotted line represents the intramolecular hydrogen bonds between
carboxylate and amine groups.
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afforded (L)2-[Au3{Ni(d-pen)3}2]
5�, which shows a CD spec-

trum entirely enantiomeric to that of 25�.[33, 34]

To elucidate the steric factors that govern the selective
formation of the (L)2 isomer for 15� versus the (D)2 isomer for
25�, their molecular structures were compared in detail. In 25�,
having D configurational NiII centers, all the l-pen N,S-
chelate rings adopt a lel (l for D) conformation with free
COO� groups pointing to an equatorial orientation (Fig-
ure 3b). In general, a five-membered chelate ring prefers to
have a lel conformation (l for D, d for L) rather than ob
conformation (d for D, l for L), and a free COO� group favors
an equatorial orientation rather than an axial orientation,
which are explained by the thermodynamic aspect.[35–37] Thus,
the D configurational selectivity found in 25� originates from
the preference of the equatorial orientation of the COO�

groups, together with the preference of the lel conformation
of the N,S-chelate rings. In contrast, in 15�, having L

configurational NiII centers, four of six l-cys N,S-chelate
rings adopt an ob (l for L) conformation with free COO�

groups pointing to an equatorial orientation, while the
remaining two N,S-chelate rings have a lel (d for L)
conformation with COO� groups pointing to an axial
orientation (Figure 3 a). A notable structural feature of 15�

is the formation of an intramolecular hydrogen bond between
an axially oriented COO� group and an adjacent NH2 group
(N···O 2.883(16) �). A similar hydrogen bonding interaction
has been found in an S-bridged tricobalt(III) complex with l-
cysteinate ((L)2-[Co{Co(l-cys)3}2]

3�), and the existence of this
interaction has been ascribed to the selective formation of the
(L)2 isomer for this complex.[26a] Thus, it is most likely that the
stabilization resulting from the hydrogen bonding, together
with that from the lel conformation, leads to the selective
formation of the (L)2 isomer for 15�. Molecular modeling
examinations revealed that in the corresponding l-pen
complex with the L configuration, the axial orientation of
COO� group, which is required for the formation of an
intramolecular hydrogen bond, is unfavorable owing to the
steric repulsion between l-pen methyl groups and AuI linkers,
thus forming the opposite D configuration with lel conforma-
tional N,S-chelate rings and equatorial COO� groups.

With the aim of checking the generality of the selective
formation of the (L)2 isomer for this class of l-cys complexes,
Na5-1 was treated with K3[Co(CO3)3] in water to synthesize an
analogous AuI

3CoIII
2 pentanuclear complex by the replace-

ment of NiII by CoIII. When the resulting dark red reaction
solution was chromatographed on an anion-exchange column
(QAE Sephadex A-25), a main purple-brown band of
[Au3{Co(l-cys-N,S)3}2]

3� (33�) was eluted with 0.2m aqueous
NaCl.[38] The absorption spectral features of 33� are reminis-
cent of those of (D)2-[Ag3{Co(l-cys-N,S)3}2]

3�, which was
prepared by the reaction of D-[Co(l-cys-N,S)3]

3� with a
silver(I) salt.[28, 39] The CD spectrum of 33� exhibits a positive
and a negative CD bands from longer wavelength in the d–d
absorption band region.[28] This CD pattern is opposite to that
of (D)2-[Ag3{Co(l-cys-N,S)3}2]

3�, indicating that 33� is the (L)2

isomer like the parent 15�. A similar reaction of K5-2 with
K3[Co(CO3)3] also gave a dark red solution. Anion exchange
column chromatography of this reaction solution gave a main
red-purple band ([Au3{Co(l-pen-N,S)3}2]

3� ; 43�) that was also

eluted with 0.2m aqueous NaCl.[38] The absorption spectrum
of 43� is very similar to that of 33�, while its CD spectrum is
nearly enantiomeric to that of 33�.[28] These spectral features
clearly indicate that 43� has an S-bridged AuI

3CoIII
2 structure

in (D)2-[Au3{Co(l-pen)3}2]
3�, in which the stereochemical

configurations about the two CoIII centers are opposite to
those in 33�.[40] Thus, it can be concluded that l-cys and l-pen
form the S-bridged AuI

3M2 (M = NiII, CoIII) pentanuclear
structures with the opposite (L)2 and (D)2 configurations,
respectively.

In summary, we showed that l-cysteine and l-penicill-
amine both organize into S-bridged AuI

3NiII
2 pentanuclear

structures in combination with NiII and AuI, by way of the NiII

mononuclear structures. Although the precursory NiII com-
plex with l-cysteinate gives the same chiral structure as that
with l-penicillaminate, the AuI

3NiII
2 complexes with l-cys-

teinate and l-penicillaminate were found to selectively afford
the (L)2 and (D)2 isomers, respectively, which are converted to
the corresponding AuI

3CoIII
2 complexes with (L)2 and (D)2

configurations. These results imply that the higher organiza-
tion of the mononuclear structure into the pentanuclear
structure leads to the dramatic change in chiral effects due to
l-cysteinate and l-penicillaminate. The formation of a
favorable amine–carboxylate hydrogen bond and the exis-
tence of an unfavorable steric interaction appears to be
responsible for this remarkable result.

Experimental Section
Experimental details, together with spectroscopic data, are given in
the Supporting Information.
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