New Benzothiophene Compounds Related to Propafenone ${ }^{\star}$

Bernard Unterhalt* and Lucas Rems
Institut für Pharmazeutische Chemie der Westfälischen Wilhelms-Universität Münster, Hittorfstr. 58-62, D-48149 Münster, Germany

Key Words: Propafenone; benzothiophene compounds; antiarrhythmic effects

Summary

Benzothiophene compounds 3a and 3b, structurally similar to propafenone (1), are described.

Introduction

The pharmacological activity of antiarrhythmic propafenone (Rytmonorm) (1) is due to its blocking of cardiac sodium channels ${ }^{[1]}$. 1 is a flexible molecule. Its rigidization by ring closure to the benzofuran $2 \mathbf{a}$ as well as by the synthesis of the respective benzothiophene 3 a might influence the pattern of pharmacological activity. While Fleischhacker et al. ${ }^{[2]}$ synthesized 2a and 2b, we succeeded in building up the benzothiophene derivatives $\mathbf{3 a}$ and $\mathbf{3 b}$.

Results and Discussion

Chemical access to the title compounds starts with 2methylbenzothiophene (4) ${ }^{[3]}$, which is acylated to the ketone 5. Reduction of 5 with NaBH_{4} gives 6 , which is oxidized to the aldehyde 7 by ceric sulfate. After the addition of trimethylsilyl cyanide the protected cyanohydrin 8 is reduced to the substituted aminoethanol 9 by LiAlH_{4}. Acylation of 9 by propionylchloride and reduction of the corresponding carboxamide lead to 3 a , condensation of 9 with acetone and reduction of the imine to $\mathbf{3 b}$ [Scheme 1].

3a and $\mathbf{3 b}$ were studied in guinea-pig isolated papillary muscles and right atria ${ }^{[4]}$; their inotropic, chronotropic, and β-adrenoceptor-blocking activity were compared with propafenone (1). 3a and $\mathbf{3 b}$ were equally potent as $\mathbf{1}$ in reducing the isometric force of contraction of papillary muscles $\left[\mathrm{EC}_{50}(\mu \mathrm{~mol} / \mathrm{l}): \mathbf{3 a}(4.9) ; \mathbf{3 b}(5.2) ; \mathbf{1}\right.$ (7.5)]. 3b decreased the rate of spontaneous activity of right atria in a similar way as 1 , whereas 3 a showed a more negative chronotropy [EC_{50} ($\mu \mathrm{mol} / \mathrm{l}$): 3a (8.8); 3b (16.5); 1 (13.0)]. Contrary to 1, 3a and 3b lacked any β-adrenoceptor blocking activity ${ }^{[5]}$.

Experimental

General: Melting points: Reichert hot-stage microscope (uncorr.).- Elemental analysis: CHN-Analyzer 240 Perkin Elmer.- IR data: Shimadzu 470; Bio-Rad FTS-135.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR-spectra: Varian Gemini 200 spec-trometer.-MS: Finnigan MAT $44 S(70 \mathrm{eV})$.

2-Methyl-3-phenacetyl-benzothiophene (5)

Phenacetyl chloride ($21.0 \mathrm{~g}, 0.14 \mathrm{~mol}$) is added to a suspension of AlCl_{3} ($21.2 \mathrm{~g}, 0.16 \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$ with stirring. After cooling to $5^{\circ} \mathrm{C}$ $4(19.7 \mathrm{~g}, 0.13 \mathrm{~mol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ is added dropwise. The reaction mixture is stirred for 2 h at $20^{\circ} \mathrm{C}$, cautiously hydrolyzed by ice cold water, and extracted several times with $\mathrm{Et}_{2} \mathrm{O}$. The extracts are washed well with 10% aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by Kugelrohr distillation and recrystallization ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$).
Yield $24.2 \mathrm{~g}(69 \%)$. Mp. $68{ }^{\circ} \mathrm{C}$.- IR (KBr): $1643 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1490,1441$, 1418, 1340.- ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.23-7.45 (m, 7 H aromatic), $7.74-7.79(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 8.07-8.12(\mathrm{~m}, 1 \mathrm{H}$, 4-H)-- ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=16.76\left(\mathrm{CH}_{3}\right), 50.24\left(\mathrm{CH}_{2}\right), 121.89(\mathrm{C}-7)$, 123.50 (C-4), 124.52 (C-5), 125.50 (C-6), 127.09 (C-4'), 128.71 (C-2', C-6'), 129.64 (C-3', C-5'), 134.23 (C-3), 137.57 (C-1'), 138.37 (C-7a), 147.85 (C-2), $196.83(\mathrm{C}-8) .-\mathrm{MS}: m / z(\%)=266(9)\left[\mathrm{M}^{+}\right], 175(100), 147(34), 103$ (13), 91 (9), 69 (13).- $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{OS}$, Anal. C, H.

2-Methyl-3-phenethyl-benzothiophene (6)

NaBH_{4} pellets ($33.0 \mathrm{~g}, 0.87 \mathrm{~mol}$) are given to cold trifluoroacetic acid (500 ml) with stirring for 2 h under a nitrogen atmosphere. 5 (24.2 g , 91 mmol) is added dropwise within 10 min , combined with two further pellets of NaBH_{4}, and stirred overnight. The reaction mixture is cautiously hydrolyzed with aqueous NaOH , and extracted four times with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$. After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporating the crude product is purified by Kugelrohr distillation. Yield $16.0 \mathrm{~g}(70 \%)$. Bp. $115^{\circ} \mathrm{C} / 0.04$ mbar.- IR (NaCl: film): $3020 \mathrm{~cm}^{-1}, 2910$, 1450.- ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.28(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.95(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H})$, $7.16-7.46$ (m, 7 H aromatic), $7.71-7.75$ (m, $1 \mathrm{H}, 7-\mathrm{H}), 7.81-7.85(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta=13.48\left(\mathrm{CH}_{3}\right), 28.64(\mathrm{C}-8), 35.81$ (C-9), 121.01 (C-4), 122.23 (C-7), 123.45 (C6), $123.90(\mathrm{C}-5), 126.06\left(\mathrm{C}-4^{\prime}\right), 128.40\left(\mathrm{C}-3^{\prime}\right.$, $\left.\mathrm{C}-5^{\prime}\right), 128.63\left(\mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}\right), 130.67(\mathrm{C}-3)$,
135.06 (C-2), 138.47 (C-7a), 140.15 (C-1'), 141.71 (C-3a).-MS: $m / z(\%)=$ $252(18)\left[\mathrm{M}^{+}\right], 161(100), 128(29), 115(14), 91(23), 77(9), 65(14), 51(9) .-$ $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~S}$, Anal. C, H .

3-Phenethyl-benzothiophene-2-carbaldehyde (7)

$\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \times 4 \mathrm{H}_{2} \mathrm{O}(55.1 \mathrm{~g}, 0.14 \mathrm{~mol})$ is suspended in $50 \% \mathrm{HOAc}(300 \mathrm{ml})$. After adding $6(8.6 \mathrm{~g}, 0.034 \mathrm{~mol})$ the suspension is refluxed for 2 h with stirring; its colour changes from dark yellow to yellow. The cold mixture is filtered, and the filtrate extracted three times with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$. After washing with a saturated aqueous solution of NaHCO_{3} and drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) the residue left on evaporation is purified by silica gel column chromatography using light petroleum (bp $60-90^{\circ} \mathrm{C}$)- $\operatorname{EtOAc}(5: 1)$ as eluent. Yield 6.0 g (66%). Mp. $85{ }^{\circ} \mathrm{C}$ - $-\mathrm{IR}(\mathrm{KBr}): 1655 \mathrm{~cm}^{-1}, 1526,1494,1209 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 3.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}), 3.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 6.95-7.14$ $(\mathrm{m}, 2 \mathrm{H}$ aromatic, Ph$), 7.14-7.38(\mathrm{~m}, 3 \mathrm{H}$ aromatic, Ph$), 7.46$ (ddd, $J_{1}=7.2$ $\left.\mathrm{Hz}, J_{2}=7.1 \mathrm{~Hz}, J_{3}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 7.53\left(\mathrm{ddd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}\right.$, $\left.J_{3}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 7.89\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 7.94(\mathrm{dd}$, $\left.J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta=28.96(\mathrm{C}-9), 37.20(\mathrm{C}-8), 123.60(\mathrm{C}-4), 124.94(\mathrm{C}-6), 126.77(\mathrm{C}-5)$, 128.24 (C-4'), 128.63 ($\left.\mathrm{C}^{\prime} 3^{\prime}, \mathrm{C}^{\prime} 5^{\prime}\right), 128.73$ (C-2', C-6'), 138.55 (C-2), 139.34 (C-7a), 140.24 (C-3a), 142.54 (C-1'), 145.78 (C-3), 183.48 (CHO).-MS: m/z $(\%)=266(24)\left[\mathrm{M}^{+}\right], 237(8), 175(49), 147(32), 115(9), 103(15), 91$ (100), 77 (13), 65 (26), 51 (13).- $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{OS}$, Anal. C, H.

3-Phenethyl- α-trimethylsilyloxy-2-benzothienyl-acetonitrile (8)

Trimethylsilyl cyanide ($3.1 \mathrm{~g}, 26 \mathrm{mmol}$) is given to a solution of $7(6.8 \mathrm{~g}$, 26 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After adding three drops of SbCl_{5} the colour is changed from yellow to red-brown. The mixture is stirred at room temperature for 2 h , evaporated without heating, and purified by suspension in n-hexane and removal of the supernatant. Yield $8.1 \mathrm{~g}(85 \%) . \mathrm{Mp} .81^{\circ} \mathrm{C}$ (dec.). - MS: $m z(\%)=365(13)\left[\mathrm{M}^{+}\right], 293(5), 274$ (14), $260(11), 175$ (39), 147 (75), 91 (100), 73 (78), 65 (25).

2-(2'-Amino-l'-hydroxy)ethyl-3-phenethyl-benzothiophene (9)

$\mathrm{LiAlH}_{4}(0.8 \mathrm{~g}, 21 \mathrm{mmol})$ is suspended in dry $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$, chilled to $-40^{\circ} \mathrm{C}$, and combined dropwise with crude $8(7.4 \mathrm{~g}, 21 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ (50 ml) under a nitrogen atmosphere. The reaction mixture is stirred for $\mathbf{2 h}$, warmed up to room temperature, and stirred for 2 h . After hydrolyzing with water (100 ml) the precipitate is dissolved in potassium sodium tartrate tetrahydrate $(6.0 \mathrm{~g}) / 20 \% \mathrm{NaOH}(100 \mathrm{ml})$, extracted three times with $\mathrm{Et}_{2} \mathrm{O}$ (200 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. A saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ is added to $\mathrm{pH} 5-6,9-\mathrm{HCl}$ is precipitated, and purified by silica gel column chromatography using light petroleum (bp. $60-90^{\circ} \mathrm{C}$)-EtOAc ($1: 1$) as eluent. The impurities are separated, the product is dissolved from the column by MeOH . After evaporation a colourless powder ($6.3 \mathrm{~g}, 90 \%$) of mp. $217^{\circ} \mathrm{C}$ (dec.) is obtained: crude 9-HCl.- ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{MeOD}): \delta=2.13$ (dd, $J_{1}=12.8 \mathrm{~Hz}, J_{2}=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 2.84\left(\mathrm{dd}, J_{1}=12.8 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 2.92-3.26$ $(\mathrm{m}, 4 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}), 5.08\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}\right), 7.04-7.08$ $(\mathrm{m}, 2 \mathrm{H}$ aromatic, Ph$), 7.14-7.29(\mathrm{~m}, 3 \mathrm{H}$ aromatic, Ph$), 7.31-7.46(\mathrm{~m}, 2 \mathrm{H}$, $5-\mathrm{H}, 6-\mathrm{H}), 7.81-7.86$ (m, 2H, 4-H, 7-H).

2-(1'-Hydroxy-2'-propylamino)ethyl-3-phenethyl-benzothiophene (3a)

Crude $9-\mathrm{HCl}\left(2.0 \mathrm{~g}, 5 \mathrm{mmol}\right.$) is suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml), and combined with $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~g}, 10 \mathrm{mmol})$ after cooling to $-50^{\circ} \mathrm{C}$. Propionyl chloride $(0.5 \mathrm{~g}, 6 \mathrm{mmol})$ is added dropwise, and the reaction mixture is stirred for 2 h at room temperature. After hydrolysis you extract three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{ml}\right.$), dry the organic phases ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and remove $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to get a colourless powder of the propionamide, purified by suspension in n-hexane.

Yield $1.7 \mathrm{~g}(96 \%)$. Mp. $148{ }^{\circ} \mathrm{C} .-\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$, Anal. C, H, N.
The propionamide ($1.4 \mathrm{~g}, 4 \mathrm{mmol}$) is dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$, and added dropwise to a suspension of $\mathrm{LiAlH}_{4}(0.2 \mathrm{~g}, 5 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$. After stirring overnight at room temperature the mixture is cooled to $-40^{\circ} \mathrm{C}$, and hydrolyzed with water (10 ml). The slurry is dissolved by adding potassium sodium tartrate tetrahydrate ($1.2 \mathrm{~g}, 4 \mathrm{mmol}$) and $90 \% \mathrm{NaOH}(30 \mathrm{ml})$, the ethereal solution is separated, and the water phase carefully washed with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$. The combined ethereal layers are dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and a saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ is added dropwise ($\mathrm{pH} 5-6$). Crystalline $\mathbf{3 a - H C l}$ is filtered off, and recrystallized $\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$. Yield $1.2 \mathrm{~g}(79 \%)$. Mp. $209^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{MeOD}): \delta=1.03$ (t, $\left.J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.67\left(\mathrm{tq}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16$ (dd, $\left.J_{1}=12.5 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 2.79-3.38\left(\mathrm{~m}, 6 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}, \mathrm{CH}_{2}\right)$, $3.02\left(\mathrm{dd}, J_{1}=12.5 \mathrm{~Hz}, J_{2}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 5.17\left(\mathrm{dd}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=\right.$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}$), $7.03-7.07(\mathrm{~m}, 2 \mathrm{H}$ aromatic, Ph), $7.18-7.27(\mathrm{~m}, 3 \mathrm{H}$ aromatic, Ph), $7.28-7.46(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}), 7.82-7.88(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 7-\mathrm{H})$.$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{CINOS}$, Anal. C, H, N.

2-(1'-Hydroxy-2'-isopropylamino)ethyl-3-phenethyl-benzothiophene (3b)
Crude $9-\mathrm{HCl}(1.8 \mathrm{~g}, 5.4 \mathrm{mmol})$ is dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$, acetone $(1.0 \mathrm{ml})$ is added, and the mixture stirred with $\mathrm{NaBH}_{3} \mathrm{CN}(0.5 \mathrm{~g}, 8 \mathrm{mmol})$ for 30 min . After repeating this procedure with acetone (0.5 ml) and $\mathrm{NaBH}_{3} \mathrm{CN}$ $(0.3 \mathrm{~g}, 4.8 \mathrm{mmol})$ it is extracted by $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and treated with a saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(\mathrm{pH} 5-6)$. Crystalline $\mathbf{3 b}-\mathrm{HCl}$ is filtered off. Yield $1.3 \mathrm{~g}(64 \%) . \mathrm{Mp} .205{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right) .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (MeOD): $\delta=1.27\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.24\left(\mathrm{dd}, J_{1}=12.5 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 2.94-3.35(\mathrm{~m}, 6 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}$, $11-\mathrm{H}, \mathrm{CH}), 5.21\left(\mathrm{dd}, J_{1}=10.9 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}\right), 7.04-7.46(\mathrm{~m}$, $7 \mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}, 5 \mathrm{H}$ aromatic, Ph$), 7.82-7.88(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 7-\mathrm{H})$.$\mathrm{C}_{2} \mathrm{H}_{26} \mathrm{ClNOS}$, Anal. C, H, N.

References

ش Dedicated to Prof. Dr. W. Wiegrebe, Regensburg, on the occasion of his 65th birthday.
[1] J.C. Somberg in Antiarrhythmic Drugs (Ed.: E.M. Vaughan Williams), Springer, Berlin, Heidelberg, 1989, pp. 258-263.
[2] G. Ecker, W. Fleischhacker, C.R. Noe, Heterocycles 1994, 38, 12471256.
[3] E.N. Karaulova, D.S. Meilanova, G.D. Gal'pern, Zh. Obshch. Khim. 1960, 30, 3292-3297 [Chem. Abstr. 1961, 55, 19892a]; Dokl. Akad. Nauk S.S.S.R. 1958, 123, 99-101 [Chem. Abstr. 1959, 53, 5229f].
[4] R. Lemmens-Gruber, C. Studenik, H. Marei, P. Heistracher, Arch. Int. Pharmacodyn. Ther. 1995, 330, 165-176 [Chem. Abstr. 1996, 124, 307046].
[5] R. Lemmens-Gruber, S. Hahn, M. Themeszl, P. Heistracher, to be published.

Received: February 6, 1997 [FP183]

