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ABSTRACT 

Hock, F.J., and G. Wiemer: Involvement of nitric oxide formation in the action of ramipril 
and ramipril-octil in an inhibitory avoidance task in mice. Drug Dev. Res. 27:229-237, 1992. 

We tested (in an inhibitory avoidance test) ramipril and the n-octyl-ester of ramipril (RA-octil; 
Hoe 065), which was shown to have no significant influence on plasma-converting enzyme 
(CE) activity or blood pressure in spontaneously hypertensive rats. In addition, the influence 
of the specific NO-synthase inhibitor NG-nitro-L-arginine (L-NNA) and the specific B2 an- 
tagonist Hoe 140 in combination with ramipril and RA-octil were tested. Rarnipril and RA- 
octil showed a significant prolongation of step-through latencies. L-NNA and Hoe 140 by 
themselves showed no effects. The combination of ramipril and of RA-octil, respectively, 
with L-NNA or Hoe 140 did not produce any prolongation of step-through latencies. 
0 1992 Wiley-Liss, Inc. 

Key words: Hoe 140, nitric oxide, NG-nitro-L-arginine, memory 

INTRODUCTION 

Converting enzyme (CE, EC 3.4.15.1) is a dipeptidyl-carboxy peptidase that cleaves 
histidyl-leucine from the carboxyl terminus of angiotensin 1 (ANG I) to yield the octapeptide 
angiotensin I1 (ANG 11) [Cushman and Cheung, 1971; Geiger, 1984; Severs and Daniels- 
Severs, 19731. C E  also cleaves C-terminal residues from a variety of other peptides including 
bradykinin, substance P, enkephalins, and neurotensin [Cascieri et al., 1984; Dorer et al., 
1974; Erdos et al., 1978; Skidgel et al., 19841. 

The octapeptide ANG I1 is known as the circulating effector peptide of the renin- 
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angiotensin system. It is classically linked to the systemic control of blood pressure [Page and 
Bumpus, 1961; Peart, 19651. On the other hand, ANG I1 was shown to have central effects 
[Felix and Schlegel, 1978; Severs and Daniels-Severs, 19731 and to be present in brain tissue 
[Fischer-Ferraro et al., 1971; Phillips et a]., 19791. Centrally administered ANG 11 was 
reported to disrupt learning and retention performance in rats [Morgan and Routtenberg, 
19771. 

In a histochemical study Haas et al. [1980] found an angiotensin-like (ANG 11) immu- 
noreactivity in the pyramidal cell layer of the hippocampal area CA1 and CA3 and in the 
stratum granulosum of the area dentata. Electrophysiological recordings revealed a rapid 
depolarizing action and an increase in firing rate, but no measurable change in membrane input 
resistance. Bath-applied ANG I1 increased the amplitude of population spikes evoked by 
stimulation of the Schaffer-collaterals or commissural fibers and induced multiple spikes. Haas 
et al. [ 19821 explained their results as an epileptic sign. As mentioned earlier, ANG I1 has been 
shown to disrupt learning, and it is well known that convulsions cause amnesia and that 
long-term potentiation (LTP), which is related to memory processes in the hippocampus, is 
lost following seizures [Hesse and Teyler, 19761. 

Recent experiments indicate that nitric oxide (NO) is produced in the granule cells of the 
cerebellum in response to glutamate application [Garthwaite et al., 19881. There are reasons 
to suggest an even more fundamental role for NO in altering synaptic efficacy within various 
brain regions in the adult as well as in synaptogenesis during development. Furthermore, a 
body of data has accumulated demonstrating that the synaptic changes of LTP result from the 
temporal correlation of presynaptic activity and postsynaptic depolarization [Bliss and Lynch, 
19881. Recently, Williams et al. [1989] have suggested that the signal from the postsynaptic 
site to the presynaptic site in LTP may be NO. 

In this context it is interesting that C E  inhibition leads to the accumulation and release 
of bradykinin in the vascular wall with subsequent formation of NO. In earlier experiments we 
tested [in an inhibitory (passive) avoidance test] ramipril [unpublished data] and the n-octyl- 
ester of ramipril (RA-octil) [Hock et al., 1989; Wiemer et al.,  19891, which was shown to have 
no significant influence on plasma CE activity or blood pressure in spontaneously hypertensive 
rats. To understand the possible mechanisms of action, we therefore tested the influence of the 
specific NO-synthase inhibitor NG-nitro-L-arginine (L-NNA) as well as the specific B2 antag- 
onist Hoe 140 [Hock et al., 1991; Wirth et al., 19911 in combination with ramipril and 
RA-octil in this behavioral experiment. 

MATERIALS AND METHODS 
Test Procedure 

Male mice of the NMRI strain (Hoechst Breeding Farm) weighing 20-25 g were used 
in the experiments. All animals were maintained on a 12 hr darklight cycle (lights on 6 a.m.). 

The test apparatus was a modified Jarvik step-through inhibitory avoidance box [Hock 
and McGaugh, 1985; Kopp et  a l . ,  19671 consisting of a small chamber connected to a larger 
dark chamber via a guillotine door. The small chamber was illuminated with a 7 W/12 V bulb. 
The mice were given an acquisition trial followed by a retention trial 24 hr later. In the 
acquisition trial a mouse was placed in the illuminated compartment at a maximal distance 
from the guillotine door, and the latency to enter the dark compartment was measured. 
Animals that did not step through the door within 90 sec (cut-off time) were not used. 
Immediately after the mouse had entered the dark compartment the door was shut automati- 
cally and an unavoidable footshock (FS: 1 mA; 1 sec) was delivered. The mouse was then 
quickly removed (within 10 sec) from the apparatus and put back into its home cage. The 
cut-off time on day 2 was 300 sec. 

Ramipril was tested in a dose range of 0.03-10 mg/kg i.p. and RA-octil was tested in 
a dose range of 0.03-30 mglkg i.p. The ramipril- and the RA-octil groups were treated 60 min 
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Fig. 1 .  
only). *, P < 0.05, Kruskal-Wallis ANOVA. 

Effects of ramipril (Lp.) on inhibitory avoidance in mice. CAC, control group (received vehicle 

prior to training and testing. In a second set of experiments L-NNA (tested doses: 0.03, 0.3, 
3 ,  and 30 mg/kg i.p.) and Hoe 140 (tested doses: 0.1, 0.3, and 1 mg/kg s.c.) were tested in 
this model. The L-NNA and the Hoe 140 groups were treated 30 min prior to training and 
testing. Scopolamine was given in an amnesic dose of 2 mg/kg S.C. 5 min prior to the 
acquisition test. 

The behavioral experiments described here were carried out in accordance with the 
Tierschutzgesetz (Animal Protection Law) of the Federal Republic of Germany, i.e., they were 
approved in writing and supervised by state and town authorities enforcing the Tierschutz- 
gesetz locally on behalf of the Federal Government. 

Drugs 

Ramipril, RA-octil, and Hoe 140 were synthetized at Hoechst AG and were dissolved 
in 0.9% saline containing 2% ethanol. (-)-Scopolamine hydrobromide and NG-nitro- 
L-arginine (L-NNA) were purchased from commercial sources. 

Statistics 

The results are expressed as medians. The significance of differences was analyzed with 
the Mann-Whitney U-test [Sachs, 19843 and Kruskal-Wallis ANOVA [Sachs, 19841. A prob- 
ability of 0.05 was accepted as significant. 

RESULTS 

In the training trial the mice treated with scopolamine (CAC) showed (besides the 
amnesia) a slightly longer latency to enter the dark compartment in comparison to animals not 
treated with scopolamine. The median response latency on day 1 was 19 sec (average of all 
groups) and 26 sec for the CAC group (data not shown). The difference was not significant. 

In all experiments the median retention latencies of the control groups (C-C) in the 24 
hr retention test was 300 sec (cut-off time). The latencies of the drug groups (D-D) not given 
scopolamine were not effected by the dmg administration, i.e., the median retention latency 
in these groups was 300 sec. 

As shown in Figure 1, the CAC group showed a marked reduction of the median 
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Fig. 2. 
only) *, P < 0.05, Kruskal-Wallis ANOVA. 

Effects of RA-octil (i.p.) on inhibitory avoidance in mice. CAC, control group (received vehicle 

retention latencies (median latency: 18 sec) in comparison to the latencies of the untreated 
groups (C-C). The impairing effect of scopolamine on the retention latencies was significantly 
attenuated by ramipril given prior to the acquisition and retention tests (DAD) in doses of 0.03 
mgikg and 1-10 mg/kg i.p. ( P  < 0.05, Kruskal-Wallis ANOVA). 

The RA-octil experiments showed that the impairing effects of scopolamine were sig- 
nificantly attenuated by this compound in doses of 0.03 mg/kg and 0.3-3 mg/kg i.p. ( P  < 
0.05, Kruskal-Wallis ANOVA; Fig. 2). 

As shown in Figures 3 and 4, L-NNA (0.03-30 mg/kg i.p.) and Hoe I40 (0.1-1 mg/kg 
s.c.) did not influence the effects of scopolamine. There was no attenuation or potentiation of 
the scopolamine effects. 

In the combination studies L-NNA was tested in a dose of 3 mg/kg i.p. and Hoe 140 was 
tested in a dose of 1 mg/kg S.C. The retention-enhancing effects of ramipril and RA-octil were 
abolished in both combinations (Figs. 5-8). The slight increase in two groups given RA- 
octilk-NNA (0.3/3 mg/kg and 10/3 mglkg) was not significant. 

DISCUSSION 

Our findings indicated that ramipril and RA-octil [for details see Hock et al., 19891 
enhanced retention in an inhibitory (passive) avoidance test after scopolamine amnesia. The 
active dose range of both compounds was comparable. The inverted U-shaped or the double 
bell-shaped dose-response curves seen in these experiments were comparable to those obtained 
with other memory-enhancing drugs and hormones [Bartus et al., 1980; Cumin et al., 1982; 
Fekete and deWied, 1982; Hock and McGaugh, 1985; Hock et al., 1988, 1989; McGaugh, 
19851. The reason for the lack of effectiveness of the higher doses was not clear. A possible 
explanation of the dose-dependent facilitation by ramipril and RA-octil was that these mole- 
cules have two different intrinsic activities. Similar results were described with ORG 2766, 
and the possibility that a molecule has two different intrinsic activities has been discussed 
[Fekete and deWied, 19821. The type of dose-response curve also suggested that ramipril and 
RA-octil may have more than one type of mechanism, one seen at low doses and the other at 
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Fig. 3. Effects of L-NNA (i.p.) on inhibitory avoidance in mice. CAC, control group (received vehicle 
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Effects of Hoe 140 (s.c.) on inhibitory avoidance in mice. CAC, control group (received vehicle 

high doses. Similar behavioral results have been described by Nabeshima et al. [ 19881 for the 
compound NIK-247, a 4-aminopyridine derivative. 

The potent and selective NO-synthase inhibitor L-NNA [Dwyer et al., 1991; Lambert et 
al., 19911 had no influence on scopolamine-induced amnesia in this model. The same results 
were obtained using Hoe 140, a potent and long-acting bradykinin antagonist [Hock et al., 
1991; Wirth et al., 19911. However, the retention-enhancing effects of ramipril and RA-octil 
could be blocked by L-NNA as well as by Hoe 140. 

This was in accordance with results of a recent study by Wiemer et al. [1991b], who 
demonstrated evidence of the formation of bradykinin by cultured endothelial cells from 
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Fig. 5 .  Effects of the combination of ramipril (i.p.) and L-NNA ( ip . )  on inhibitory avoidance mice. 
CAC, control group (received vehicle only). Under each bar, the first number represents the dose of 
ramipril; the second represents the dose of L-”A. 

75  

0 I 
Fig. 6. Effects of the combination of ramipril (i.p.) and Hoe 140 (s.c.) on inhibitory avoidance in mice. 
CAC, control group (received vehicle only). Under each bar, the first number represents the dose of 
ramipril; the second represents the dose of Hoe 140. 

bovine aorta. Martin et al. [ 19881 and Schini et al. [ 19901 showed an enhanced production of 
cyclic guanine monophosphate (cGMP) in endothelial cells in response to NO-releasing ago- 
nists such as bradykinin, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and 
calcium ionophore. It was shown that CE inhibitors stimulate the formation of N O  and 
prostaglandin (PG)I, in endothelial cells, most likely by inhibiting the breakdown of endo- 
thelial-derived kinins. This was proved by using the selective BZreceptor antagonist Hoe 140, 
which abolished the enhanced NO and PGI, formation observed after CE inhibition. 
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Fig. 7. Effects of the combination of RA-octil (i.p.) and L-NNA (i.p.) on inhibitory avoidance in mice. 
CAC, control group (received vehicle only). Under each bar, the first number represents the dose of 
RA-octil; the second represents the dose of L-”A. 

Fig. 8. Effects of the combination of RA-octil (i.p.) and Hoe 140 (s.c.) on inhibitory avoidance in mice. 
CAC, control group (received vehicle only). Under each bar, the first number represents the dose of 
RA-octil; the second represents the dose of Hoe 140. 

As mentioned in the Introduction, NO played a possible role in LTP, which is the 
electrophysiological correlate for learning and memory. In an in vitro study on rat hippocam- 
pus slices Bohme et al. [1991] showed that L-p-nitro-arginine (L-NOARG) blocks LTP 
induction in a manner that could be reversed stereospecifically by L-arginine, the substrate of 
NO-synthase. L-NG-monomethyl-arginine (L-NMMA), another inhibitor of NO-synthase 
[Knowles et al., 19901 has also recently been shown to block another form of synaptic 
plasticity in the brain, namely long-term depression in the cerebellum [Shibuki and Okada, 
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1991). The same authors also showed that exogenous NO or cGMP could substitute for the 
stimulation of climbing fibers to cause long-term depression in rat cerebellar slices. Both 
results showed that NO is essential for the induction of synaptic plasticity in the brain. 

Taken together the results show that a prolongation of step-through latencies by ramipril 
and RA-octil might be gated via endothelial-derived bradykinin. This could be explained by 
the ineffectiveness of ramipnl and RA-octil, respectively, in combination with L-NNA or Hoe 
140. It was interesting that both compounds showed similar effects in the central nervous 
system whereas a clear difference existed in the periphery [Wiemer et al., 1991al. At this time 
we do not have a final explanation, and further studies are underway to confirm this possible 
explanation. 
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