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SUMMARY

The spectral Galerkin procedure is often used for

analyzing metallic gratings which are assumed to be zero-

thickness plane gratings. In this report, thin surface relief

dielectric gratings with complex permittivity are discussed

and analyzed by using the numerical approach for metallic

plane gratings with surface impedance. From numerical

results for dielectric gratings by the conventional method

and metallic plane gratings by the spectral Galerkin proce-

dure, the relations between dielectric and plane gratings are

investigated. In addition, some numerical results for infi-

nitely thin gratings with various surface reliefs are given

and the differences between surface profiles are investi-

gated. © 1999 Scripta Technica, Electron Comm Jpn Pt 2,

82(12): 38�47, 1999
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1. Introduction

Analysis of electromagnetic scattering by plane me-

tallic gratings is one of the fundamental problems in elec-

tromagnetic field theory. Many authors have reported

analyses of resistive gratings in addition to perfectly con-

ducting gratings [1�4].

In the analysis of a resistive plane grating, by assum-

ing that grating layer defined by complex permittivity and

thickness has zero thickness, a rectangular dielectric grating

is replaced by surface resistance. The calculations are car-

ried out so that the surface resistance and the current distri-

bution satisfy the boundary condition. In other words, a

dielectric grating in which the imaginary part of the permit-

tivity is very large and in which the thickness is thin

compared with skin depth is considered a resistive plane

grating. The current expansion and the resistive boundary

condition, based on the assumption that the current density

is traveling on the surface, are introduced.

The spectral Galerkin procedure [5, 6] is a popular

method for the scattering problem of plane gratings, since

the numerically acceptable solutions can be obtained in a
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small number of current expansions by application to the

resistive boundary condition. In addition, this procedure

involves less voluminous and simpler computation than the

procedure for dielectric gratings.

We have investigated the limits of thickness in the

applicability of the current expansion and the resistive

boundary condition for one-dimensional gratings. By com-

paring the numerical results between thin rectangular di-

electric gratings and resistive�reactive plane gratings [7, 8],

we reported that very thin dielectric gratings can be ana-

lyzed by using the numerical approach for plane gratings

[9, 10].

In this paper, we demonstrate that surface relief di-

electric gratings with various profiles can be treated as a

plane grating with surface impedance as a function of the

position parameter. For clarity, we consider one-dimen-

sional gratings and examine the cases of resistive and

reactive gratings separately [11, 12]. Additionally, some

numerical results for infinitely thin dielectric gratings are

given and the differences between surface profiles are dis-

cussed.

2. Setting of the Problem

As shown in Fig. 1, a one-dimensional grating with

periodicity L and width W placed on a dielectric substrate

is uniform along the y-direction. Panels (a) and (b) show a

very thin surface relief dielectric grating with various pro-

files x(z) and a plane grating with surface impedance R(z)

as a function of the position parameter z, respectively. Let

us consider scattering from the gratings by a plane wave

exp[j {Zt � �CCH1k0 �xcosTi � zsinTi�}] at an incidence angle

Ti. The regions I and III with relative permittivity

H1 and H3 are lossless materials, and the imaginary part of

the relative permittivity is ignored. In panel (a), the grating

layer in region II is described by relative permittivity

H2   H2
g  � iH2

gg and thickness x(z) = df(z), where d is the

groove depth of the grating. Since the grating in the region

x t 0 is surrounded by air, we assume that the real part of

the relative permittivity is H2
g    H1   1 throughout this paper.

If the thickness tends to zero and the conductivity varies in

such a way that the product V d keeps a finite value, the

dielectric grating can be approximated to a resistive�reac-

tive plane grating in panel (b) by using

where R0 is the impedance value in the maximum thickness

on the surface profile. R(z) is described by the surface

impedance, with the components of resistance and reac-

tance [10, 13].

In the following theory, we normalize the space vari-

ables (x, y, z) by the wave number in vacuum k0   Z�CCCHP   
2S / O such that k0x o x, k0y o y, and k0z o z.

Since the structure is periodic, electromagnetic fields

El and Hl (l = x, y, z) are expressed in terms of spatial

harmonics with expansion coefficients elm and hlm:

Using the normalized space variables, the Maxwell equa-

tions take dimensionless form (which is analytically simple

in computational electromagnetics) and can be rewritten as

where Z0   1 / Y0   �CCCCCP0 / H0  and curl
BBBB

 is the curl for the nor-

malized space variables.

 3. Method of Analysis for a Dielectric

Grating

The conventional method of solving the eigenvalue

problem of the coupling matrix is applied to a dielectric

grating in Fig. 1(a) [14].

(1)

(2)

Fig. 1. Dielectric and plane gratings.

(3)

(4)

(5)

(6)
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Since the structure is periodic, the relative permittiv-

ity H2 (x, z) in the grating layer is expanded as a Fourier

series of Nf terms with Fourier coefficients bm(x):

The quantities el(x) and hl(x) are the (2M + 1)-dimensional

row vectors of the expansion coefficients for the tangential

field components:

The differential equations for the y and z field components

can be derived as follows:

TE waves:

TM waves:

where [C] consists of m u n submatrices:

[0] is a zero matrix, [H]�1 is the inverse matrix of [H], and

Gmn is the Kronecker delta. By using the 2(2M + 1)-dimen-

sional row vector a(x) and transforming

the solution of Eq. (10) is given by

where N is an eigenvalue and [T] is a diagonalization matrix.

The eigenvalues in regions I and III can be obtained ana-

lytically:

a(x) can be decomposed into complex amplitudes ar corre-

sponding to the propagating directions determined by the

sign of N. When [m has a complex value, the sign is chosen

such that the imaginary part becomes a negative quantity.

The eigenvectors are normalized to eymhzm
    r [m

and � ezmhym
    r [m. The grating layer is approximated by

partitioning into stratified multilayers with (L � 2) rectan-

gular gratings, as represented in Fig. 2. From the boundary

conditions at each interface, we have

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(7)

(8)

Fig. 2. Partitioning of grating region into multilayers

with rectangular gratings.

(19)

(20)
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The unknowns are a1
� (x1) and aL

� �xL�1�. The m-th mode

diffraction efficiency Km
r  of the reflected wave and that Km

t

of the transmitted wave are given by

4. Method of Analysis for a Plane Grating

Applying the spectral Galerkin procedure to a plane

grating, and assuming that the parameter of thickness can

be ignored, solutions can be obtained with a small number

of the current expansion terms.

A resistive boundary condition can be characterized

by using the tangential electric field Etan (x, z) at the inter-

face x = 0, the surface resistance R(z) as a function of

position parameter z, and the current density J(x, z) as

follows:

The tangential electric field and the current density refer to

Etan = Ey and J = Jy in the TE case or Ez and Jz in the TM

case, respectively. It is easy to distinguish between the two

cases in the analysis of a one-dimensional grating and the

subscripts are omitted in the following formulas.

The total fields are given by the sum of the primary

field Etan
1st(z) with the grating strips removed and the scat-

tered field Etan
2nd (z) radiated by the source of electric current

J(z) as follows:

where gm(x) is a Green�s function in the spectral domain and

jm is the expansion coefficient of surface current, expressed

in terms of the spatial harmonics:

Let the surface current J(z) be expanded in a set of N basis

functions )p(z), as

Application of the spectral Galerkin procedure yields

which is a set of N linear equations for the unknown

coefficient Ip. Once Ip is found, the current distribution J(z)

can be determined. By using the method of solving the

eigenvalue problem in Section 3, the Green�s function gm(x)

can be easily introduced. Taking the truncation number of

the Fourier series to be 2Nf + 1 = 1, the analytic model is

equivalent to a nonperiodic multilayer. Accordingly, the

Green�s function for a source of the electric current jm is

analytically obtained for the normalized propagation con-

stant sm [10, 15]. The reflected and transmitted diffraction

efficiencies of the m-th mode are given by

5. Numerical Results

In this paper we show some numerical results for

one-dimensional gratings with rectangular, sinusoidal, tri-

angular, and asymmetric triangular profiles stated by a

function f(z) and propose that very thin dielectric gratings

with surface relief can be analyzed by the numerical ap-

proach for plane gratings. For simplicity, we verify the

cases of resistive and reactive gratings separately:

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(23)

(21)

(22)

(32)
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To allow comparison of properties between various grat-

ings, f(z) has been chosen subject to the relation that

³�W /2
W /2 x�z� dz remains constant with changing grating thick-

ness x(z). In the case of a rectangular grating, the groove

depth is d/2(= dc) and the resistive impedance is 2R0

W/square in practice. It is difficult and not useful to analyze

a grating which has very large periodicity by using the

spatial harmonic expansion method discussed in Section 3.

Thus, we calculate for L/O = 0.2 a 2.

In the following numerical results, regions I and III

refer to the air and a lossless dielectric grating with relative

permittivity H3 = 2.5, respectively. In the analyses of dielec-

tric gratings, the numbers of the spatial harmonic expansion

terms and the multilayers in region II are determined by the

convergence of solutions and the computational time. In the

analyses of plane gratings, the spatial harmonic expansion

terms of the surface current are truncated to 2M + 1 = 301.

In order to approximate the current distributions, we use the

step function as the basis function and take N = 100 as the

expansion number. With these truncation numbers for plane

gratings, the convergence of the solutions is fairly good.

First, we consider scattering by one-dimensional

gratings with periodicity L/O = 0.5 and width W/L = 0.5.

We compare the current distributions on rectangular dielec-

tric gratings which have groove depths dc/O = 0.1, 0.01,

0.001 and on plane gratings. A resistive grating corresponds

to electric loss, while a reactive grating corresponds to

inductance in the TE case or capacitance in the TM case

[16]. The cases of resistive gratings with R0 = 10 W/square

are shown in Fig. 3. The cases of reactive gratings with R0

= i 10 W/square (TE wave) and with R0 = �i 10 W/square

(TM wave) are shown in Fig. 4. A jump of the tangential

magnetic fields between the surface of the dielectric grating

and the interface xL�1 in region III is considered to be an

electric current �CCCZ0J�z� and is compared with the current

distribution on the plane grating. We note that the surface

of the grating is assigned to the surface of the partitioned

Fig. 3. Current distributions on resistive gratings with

rectangular profile.

Fig. 4. Current distributions on reactive gratings with

rectangular profile.
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multilayers in the stratified approximated model (see Fig.

2). When the groove depth is dc/O = 0.001, the results for

the dielectric gratings are in close agreement with those for

the plane gratings in the TE and TM cases. The current

distributions on the resistive and reactive gratings have

similar tendencies. In the TE case, the effects of edge

singularity appear in the results for dielectric gratings with

groove depth dc/O = 0.01, 0.001 and for plane gratings.

Figures 5 and 6 show the cases of sinusoidal and

triangular resistive gratings, respectively. The results for

dielectric gratings agree well with those for plane gratings

when the groove depth is d/O = 0.001. In the case of TE

incidence, the effects of the edge singularity look small.

Since in the case of TM incidence presented in Figs. 3(b),

4(b), 5(b), and 6(b), the electric field components are per-

pendicular to the gratings, the difference in the current

distributions between various profiles is small. By compari-

son of the current distributions in Figs. 3 to 6, we have

shown that when the groove depth is d/O d 10�3, a dielectric

grating with surface relief can be treated as a plane grating.

For sinusoidal dielectric gratings with groove depth

d/O = 0.1, 0.05, 0.01 and plane gratings (periodicity L/O =

0.5, width W/L = 0.5), the Joule loss versus surface resis-

tance and relative power versus surface reactance are plot-

ted in Figs. 7 and 8, respectively. The Joule loss is defined

as (1 � rp � tp) using the power reflected coefficient

rp �  ¦m �M
M Km

r � and the power transmitted coefficient

tp �  ¦m �M
M Km

t �. In the case of the current distributions, the

results for a dielectric grating with groove depth d/O = 10�3

and those for a plane grating are in close agreement. How-

ever, in the case of the scattering properties, the results for

a dielectric grating with groove depth d/O = 10�2 and those

for a plane grating are in close agreement, as shown in Figs.

7 and 8 [11].

Next, as an example of asymmetric profile we con-

sider an asymmetric triangular surface profile. The ampli-

Fig. 5. Current distributions on resistive gratings with

sinusoidal profile.

Fig. 6. Current distributions on resistive gratings with

triangular profile.
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tude reflected coefficients r0   �CCCK0
r  (0-th order dif-

fracted wave) of a dielectric grating with groove depth

d/O = 10�2 and a plane grating are examined in Fig. 9.

In the TE and TM cases, both results are in close

agreement over a wide range of grating widths W/L

and periodicities L/O. Accordingly, an infinitely thin

dielectric grating can be analyzed by the numerical

approach for a plane grating.

In addition, the results for infinitely thin rectangular,

sinusoidal, and triangular resistive gratings (periodicity

L/O = 0.5, width W/O = 0.5) as illustrated in Fig. 10 are

discussed numerically by making use of the numerical

approach for plane gratings. The current distributions on

resistive gratings with surface resistance R0 = 100

W/square are plotted together in Fig. 11. In the TE case

of Fig. 11(a), the current distributions differ from those

of R0 = 10 W/square. For R0 = 100 W/square, the effects

of edge singularity appear in the results for the rectangu-

lar grating and look small in the results for the sinusoidal

and triangular gratings. In the TM case of Fig. 11(b), there

is small difference in the current distributions between

various profiles, as demonstrated in the case of R0 = 10

W/square.

Figures 12 and 13 show the Joule loss versus surface

resistance in resistive gratings and the relative power versus

surface reactance in reactive gratings, respectively. From

Fig. 12, it is found that the Joule loss peaks at the same value

of the surface resistance. Since gratings with very small

and large resistance are equivalent to perfectly conduct-

ing and lossless dielectric materials, respectively, the

Joule loss approaches 0. From Figs. 12 and 13, the

difference in scattering properties between various pro-

files is significant in the TE case but not in the TM case.

This is the same behavior as the current distributions (see

Fig. 11). As a result of our investigations, we have found

that the difference between surface profiles is large in the

TE case.

Fig. 7. Joule losses of resistive gratings with sinusoidal

profile.

Fig. 8. Relative power of reactive gratings with

sinusoidal profile.
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6. Conclusions

It is shown that an infinitely thin dielectric grating

with surface relief can be analyzed by using the numerical

approach for a plane grating. Applying the numerical ap-

proach by solving the eigenvalue problem of the coupling

matrix for a dielectric grating and the spectral Galerkin

procedure for a plane grating to the same analytic model of

a one-dimensional grating, some properties of the numeri-

cal calculations are investigated. In addition, some results for

infinitely thin rectangular, sinusoidal, and triangular gratings

obtained by the numerical approach are presented and the

difference in properties between surface profiles is discussed.
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