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BACKGROUND. The purpose of this study was to determine the contribution of different
transactivating regions of the androgen receptor (AR) to the induction of androgen-regulated
promoters in poorly (PC3 cells) and well-differentiated (LNCaP cells) prostate cancer cell
lines.
METHODS. PC3 and LNCaP cells were co-transfected with plasmids expressing full-length
AR or deletion mutants together with luciferase reporters linked to the probasin (PB) and PSA
promoters; as well as to ARR3tk, a PB-derived recombinant promoter.
RESULTS. Androgen induction of the ARR3tk promoter in the presence of AR was 8- to
10-fold higher than that seen with the PB promoter. Activation of ARR3tk was greatest with
an androgen-independent construct in which the first 231 amino acids and the ligand binding
domain had been removed, indicating that this promoter is more responsive to activating
functions in the N-terminal domain than in the ligand binding domain. By comparison,
induction of the PB promoter was greatest with the full-length AR, which suggests that the
ligand binding domain also makes a major contribution to the activation of this promoter. In
similar analyses with the PSA promoter, AR regions required for promoter induction was
dependent on the host cell type. In PC3 cells, the predominant AR transactivation function
was androgen-independent and resided in the N-terminal domain, whereas in LNCaP cells,
the highest level of induction was androgen dependent and also required participation of the
ligand binding domain.
CONCLUSIONS. Our results indicate that the relative utilization of transactivating functions
in N-terminal and ligand binding domains of the AR is promoter and cell specific. Prostate
36:256–263, 1998. © 1998 Wiley-Liss, Inc.
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INTRODUCTION

The androgen receptor (AR) is a member of a large
family of nuclear transcriptional factors that generally
require binding of a specific ligand for activation and
that possess a structure composed of similar func-
tional regions or domains [1,2]. In general, each mem-
ber possesses (1) an N-terminal region containing a
ligand-independent transcriptional activating func-
tions (AF-1); (2) a centrally located DNA-binding do-
main and hinge region; and (3) in the C-terminal por-
tion of the protein, a ligand binding domain, which
contains a conserved ligand dependent transcriptional
activating function (AF-2) [3].

The N-terminal domain has the highest degree of
variability between members of the family of nuclear
receptors and may interact with other nuclear proteins
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in a receptor-specific manner [4]. In the AR, this region
is extensive and comprises more than half of the pri-
mary amino acid sequence [5–7]. The AR is unique in
that several homopolymeric stretches of amino acids
occur in this domain, including 8–31 repeating gluta-
mine residues [8], 9 proline residues, and a 10–31
polyglycine stretch [9]. Interestingly, both the polyglu-
tamine and polyglycine tracts differ significantly
among races [10]. Although the precise functions of
these repeating tracts of amino acids are unknown,
abnormal expansion of the polyglutamine tract is as-
sociated with X-linked spinal and bulbar muscular at-
rophy [11] and a decrease in the size of this homo-
polymer and polyglycine has been linked with an in-
creased risk of developing prostate cancer [10,12–14].
In transfection experiments a complete loss of trans-
activation function with deletions of N-terminal
amino acid residues 38–296 have been reported [15–
17]. Jenster et al. [18] found two variable transactiva-
tion regions in the AR N-terminal domain whose ac-
tivity was dependent on the promoter context as well
as the presence or absence of the ligand binding do-
main. Recently, Chamberlain et al. [19] have mapped
the AF-1 function into two regions: AF-1a and AF-1b.

The moderately conserved steroid/ligand binding
domain is located in the C-terminal region of nuclear
receptors and interacts with other domains to block
transcriptional activation in the absence of the appro-
priate steroid hormone. In addition, there are con-
served sequences within many nuclear receptors,
which are associated with ligand-dependent transcrip-
tional activation function-2 (AF-2) [3]. Conclusive evi-
dence for a transcriptional activation function in the
AR ligand binding domain was recently demonstrated
in a cell-free, in vitro transcription system [20]. Point
mutations in the ligand binding domain of the AR
may result in transcriptionally inactive receptor forms
[21], whereas extensive deletions often lead to mol-
ecules with the capacity for varying degrees of consti-
tutive transcriptional activity [15,22]. Interaction be-
tween the ligand binding domain and the N-terminal
domain of the AR may also occur [23–25].

It is likely that cellular and promoter specificity of
AR transactivation is determined to a large extent by
the occurrence and relative abundance of other tran-
scription factors and receptor cofactors in different tis-
sues. Co-effector proteins can either enhance (co-
activators) or repress (co-repressors) nuclear receptors
[26,27]. For instance, co-effectors ARA70 [28], TIF-2
[29], CBP, F-SRC-1, and RIP140 [25] enhance, whereas
SRC-1 [25] represses AR-mediated transactivation.
Thus, the presence or absence of certain co-effectors
would greatly effect AR function. Yet virtually every
study that has attempted to characterize the AR has
used nonprostate cell lines (usually COS, CV-1, Chi-

nese hamster ovary [CHO], or HeLa cells) [15–
19,25,29] and thus has not taken into account the po-
tential contribution of unique combinations of co-
effectors and other prostate-specific components.
Similarly, the promoters used have generally not been
derived from naturally occurring genes that are nor-
mally androgen regulated in vivo. Therefore, the effect
that a prostate cellular environment, with its particu-
lar complement of co-effectors, will have on AR trans-
activation of an androgen-regulated promoter remains
unclear. To address these problems, we have com-
pared the ability of AR deletion constructs with trans-
activate reporters containing androgen-regulated pro-
moters (i.e., the prostate-specific antigen [PSA] and
probasin [PB] genes) in transfection experiments, us-
ing well-differentiated and poorly differentiated pros-
tate cancer cell lines (i.e., LNCaP and PC3 cells, re-
spectively). Our results indicate that there is differen-
tial promoter sensitivity to regions of the AR and that
there may be dissimilar co-effector concentrations in
these prostate lines that modulate transcriptional ac-
tivity.

MATERIALS AND METHODS

Plasmid Construction

ARR3tk-luc was constructed by using −81tk-luc and
excising −244 to −96 of the 58-flanking region of the rat
PB gene from PB-CAT plasmid [30] with HindIII and
XbaI, followed by blunt ending and ligation to HindIII
linkers. Three fragments were ligated in tandem into
the HindIII site of pT81 luciferase vector (American
Type Culture Collection [ATCC], Rockville, MD),
which contains a thymidine kinase (tk) minimal re-
porter. PB-luc was made as follows. Using the PB 58-
flanking deletion starting with the HindIII site at −286
bp, the clone was digested with HindIII and FokI, and
the −286 to −53-bp PB fragment was isolated. Simi-
larly, with the PB −426- to +28-bp clone (pBH500), the
plasmid was digested with FokI and BamHI and the
−53 to +28 fragment was isolated. The two PB frag-
ments were subcloned in pBluescript II SK(+) (Strata-
gene, La Jolla, CA) to create the −286 to +28 bp PB
promoter with a HindIII/BamHI site. This PB frag-
ment was then ligated into the HindIII and BglII site of
pXP2 luciferase vector (ATCC) to form the PB-luc re-
porter. The PSA-luc plasmid was prepared by PCR
amplification of nucleotides −630 to +12 using primers
58CATTGTTTGCTGCACGTTGGAT and 58TCC-
GGGTGCAGGTGGTAAGCTTGG obtained from the
Nucleic Acid-Protein Service Unit (University of Brit-
ish Columbia, Vancouver, BC, Canada). The amplified
DNA fragment was purified, blunt-end ligated into
the EcoRV site of pBluescript SK I (−) excised with
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HindIII and inserted into the HindIII site of pGL2 basic
luciferase reporter plasmid (Promega, Madison, WI).

All rat AR plasmid constructs were prepared using
PCR as described previously [30]. All primers in-
cluded BamHI sites as well as a methionine start site in
the 58-end primers. The AR fragments synthesized
were blunt-end ligated into the EcoRV site of pBlue-
script II SK(+). The inserts were digested at one end
with ClaI, filled in with Klenow fragment of DNA
polymerase (BRL) and excised using XbaI. They were
then ligated into blunt-ended HindIII and XbaI sites
generated in the pRc/CMV vector (Invitrogen, San
Diego, CA). In all cases, the orientation and sequences
of the inserts were confirmed by DNA sequence analy-
sis using the dsDNA Cycle Sequencing System kit
(GIBCO-BRL, Burlington, Ontario, Canada).

Transient Transfection Experiments

PC3 cells were plated at a density of 7 × 105 cells/
60-mm dish in Dulbecco’s Modified Eagle’s Medium
(DMEM)(Stem Cell Technologies, Vancouver, BC,
Canada) supplemented with 5% fetal bovine serum
(FBS). Transient transfections were performed using
calcium phosphate/DNA precipitation method previ-
ously described [30] with 0.005–1.5 mg of wild-type
AR or AR mutant expression vectors, or both. The
pRC/CMV vector was used to make the final DNA
concentration to 1.5 mg, which was co-transfected with
1 mg of ARR3tk-luc or PB-luc reporter plasmid, 0.25 mg
of b-galactosidase expression vector pCH110 (Phar-
macia, Baie d’Ure, Quebec, Canada) and 0.75 mg pXP2
carrier plasmid (ATCC) per plate. The cells were har-
vested after 24 hr, and activity for luciferase (Promega
luciferase assay kit; Promega) and b-galactosidase
(Tropix galacto-light kit; Tropix Inc., Bedford, MA)
was determined using an Optocomp I luminometer
(Tropix) as specified by the manufacturers. For lipo-
fection experiments, DNA was mixed with 10 mg of
lipofectin reagent (BRL) in serum-free media, incu-
bated at room temperature for 15 min, and then added
to PC3 or LNCaP cells which had been initially plated
at 3 ×105 cells/6-well plate in RPMI 1640 plus 5% FBS.
The media was changed 6 h later to DMEM (PC3) or
RPMI 1640 (LNCaP) plus 5% dextran-coated charcoal-
stripped serum with or without 10 nM R1881. The
cells were harvested 24 hr (PC3) or 48 hr (LNCaP) after
transfections and analyzed as described above.

Western Analyses

PC3 and LNCaP cells were transfected with plas-
mids (2 mg) expressing the full-length AR and deletion
mutant ARs using lipofectin as described above.
Nuclear extracts were isolated [31] and 200 mg of

nuclear protein run on a sodium dodecyl sulfate (SDS)
polyacrylamide gel [30]. Western blots were done as
previously described [30] using the anti-AR DNA
binding domain antibody 15071A (Pharmingen, San
Diego, CA) and detected by ECL (Amersham, Arling-
ton Heights, IL). The corresponding AR peptide bands
were quantitated by densitometry scanning. For com-
parative purposes, each set of experiments were run
on the same gel to ensure identical sample treatment
and the relative AR peptide expression calculated.

RESULTS

Construction of a Reporter System for Increased
Sensitivity of Detection of AR Transactivation

The androgen response elements located between
nucleotides −244 and −96 in the 58-upstream DNA of
the rat PB gene manifest a higher induction by andro-
gens than do MMTV or tyrosine aminotransferase hor-
mone response elements [30,32]. We sought to further
increase the sensitivity of detection of transactivation
by creating a luciferase-based reporter system with
multiple PB androgen response elements linked to a
thymidine kinase (tk) minimal promoter. This reporter
construct, designated ARR3tk-luc, was co-transfected
with various concentrations of a rat AR expression
vector into PC3 cells. In parallel experiments, a PB
(nucleotides −286 to +28)-luciferase (PB-luc) reporter,
containing just one hormone response region adjacent
to its native promoter, was co-transfected with AR.
The results shown in Figure 1 demonstrate that in the
ARR3tk-luc transfectants, the net fold-induction of lu-
ciferase activity after treatment with 10 nM R1881 in-
creases linearly with AR plasmid concentrations of
#0.7 mg and then reaching a plateau with the net in-
duction of approximately 200-fold. By comparison, the
induction of PB-luc by androgens levels off at about
20-fold after transfection with 0.2–0.4 mg of AR plas-
mid. The difference in AR plasmid concentrations re-
quired for maximal induction in each system probably
reflects the three times greater amount of receptor pro-
tein required to occupy all the AR binding sites in
ARR3tk-luc reporter. Nevertheless, it is evident that
ARR3tk-luc is a much more sensitive (8–10 times more
at AR plasmid concentrations >0.7 mg) reporter for
detecting AR transactivation than is PB-luc.

Androgen-Independent Transactivation by an AR
Deletion Mutant With a Truncated N-Terminus

and Lacking a Ligand Binding Domain

We next tested different plasmids expressing AR-
constructs that lacked the ligand binding domain. De-
letion mutant AR1–649, coding for AR amino acids 1–
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649 (numbering system used by Tan et al. [33]) encom-
passes the N-terminal domain, the DNA-binding
domain, and the hinge region (for its nuclear localiza-
tion signal) but lacks the ligand binding domain.
When co-transfected with ARR3tk-luc into PC3 cells,
the amount of transactivation was always <1% of that
seen with full-length AR (data not shown). This result
differs from other reports in which removal of the
ligand binding domain was found in one case to have
constitutive activity equivalent to wild-type AR in
COS-1 cells with pG29Gtk-CAT reporter [22], and on
the other to have 10–13% of wild type in CV-1 cells
using MMTV-CAT reporter [15]. These differences
may reflect the cells and/or promoters used in the
experiments.

We next tested a plasmid that expressed AR232–649,
having the N-terminus truncated to amino acid 232. In
order to compare PC3 cell transfection results with
those using LNCaP cells, we used lipofection as a
means of transfection, as we were unable to transfect
LNCaP cells using calcium phosphate/DNA precipi-
tation methods. Co-transfection of PC3 cells with a
range of AR232–649 plasmid concentrations and with
the ARR3tk-luc reporter gave the transactivation pro-
file shown in Figure 2. The level of AR required for
maximal induction is lower in Figure 2 (0.2 mg) than in
Figure 1 (0.7–1.4 mg) because of the higher transfection
efficiencies of lipofection over calcium phosphate. The

profile was the same in the presence or absence of
androgens for AR232–649, whereas the full-length AR is
inactive in the absence of androgens (data not shown).
In these experiments, activation by AR232–649 at a plas-
mid concentration of 0.2 mg is slightly higher than the
maximum induction observed with AR. Activation of
the reporter by AR232–649 occurs androgen indepen-
dently and is consistently higher than the highest level
seen with AR in the presence of hormone.

Western blots of the AR deletion mutants show that
the AR232–649 and the full-length AR protein were ex-
pressed in PC3 cells (Fig. 3; AR232–649 protein lane 4;
AR protein lane 6). A small amount of immunoreac-
tive material corresponding to the band position of
full-length AR is observed in the control sample (lane
5) and in the AR232–649 transfected sample (lane 4).
This may be a nonrelated protein that cross-reacts
with the antibody or represent the low level of non-
functional, endogenous AR seen in PC3 cells by others
[34,35]. Immunoprecipitation experiments confirmed
the synthesis of AR232–649 and AR (data not shown).
The AR protein was expressed at approximately twice
the molar amount (2.4 ± 1.2 (3); mean ± S.D., n) of
AR232–649 protein. This implies that the higher trans-
activational competence of AR232–649 was the result of
its superior transcriptional activation in this system.

Transcriptional Activity of AR232–649 in
Well-Differentiated LNCaP Prostate Cancer Cells

LNCaP cells are more differentiated than PC3 cells
in that they contain an endogenous AR, are growth

Fig. 1. Relative induction by AR of ARR3tk-luc and PB-luc re-
porters. PC3 cells were co-transfected by the calcium phosphate
method with 1 µg of ARR3tk-luc (d) or PB-luc (❍) reporter
plasmid, 0.25 µg of b-galactosidase expression vector pCH110,
0.75 µg XP2 carrier plasmid, and 0–1.4 µg of AR (together with
sufficient pRC/CMV vector for a final AR + pRC/CMV DNA con-
centration of 1.5 µg) per plate. The fold induction (mean, n $ 3)
is the ratio luciferase activity (relative light units min−1 mg pro-
tein−1 corrected for b-galactosidase activity) in cells grown in the
presence of 10 nM R1881 over luciferase activity in cells grown in
the absence of androgen.

Fig. 2. Transactivation of ARR3tk-luc in PC3 cells by an AR
construct (AR232–649) lacking the ligand binding domain and a por-
tion of the N-terminal. After co-transfections with ARR3tk-luc and
0–1.4 µg of AR or AR232–649, with lipofection, PC3 cells were
grown in the presence or absence of 10 nM R1881. The results,
corrected for b-galactosidase activity, are expressed as mean (n
ù3) relative luciferase units min−1 mg protein−1. AR +R1881 (d),
AR232–649 +R1881 (❍).
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stimulated by androgens, and express PSA in re-
sponse to androgens [36,37]. Figure 4 shows the
results obtained after co-transfection of LNCaP
cells with ARR3tk-luc and plasmid concentrations of
AR232–649 of 0–2 mg. The contribution of the endog-
enous AR to transcriptional activation is manifested as
the difference in activity both in the presence and ab-
sence of androgen at low concentrations (<0.5 mg) of
AR232–649 plasmid. As with the PC3 cells, AR232–649
protein expressed in LNCaP cells, is a strong inducer
of ARR3tk-luc. The activity reaches a maximum at
plasmid concentrations of 0.75–1.5 mg and then de-
clines slightly. Overall, the pattern of AR232–649 induc-
tion in LNCaP cells is similar to that in PC3 cells;
implying that in both cell types, AR232–649 is a very
potent, androgen-independent activator of the ARR3tk
promoter.

The AR and AR232–649 protein was readily detect-
able in LNCaP cells using Western blots (Fig. 3; lanes
1–3). As in the PC3 cells, the relative molar amounts of
AR was twice (2.4 ± 0.9 (3)) that of AR232–649.

Differential Induction of ARR3tk, PB, and
PSA Promoters

The reporter plasmids ARR3tk-luc, PB-luc, and
PSA-luc were co-transfected by lipofection with plas-
mids expressing AR, AR232–649, or AR232–902 into PC3
and LNCaP cells. AR232–902 encodes the equivalent of
AR232–649 but also includes the C-terminal ligand bind-
ing domain. The results shown in Figure 5 indicate
that the induction of transcription by the three AR
proteins is cell and promoter specific.

In both PC3 and LNCaP cells (Fig. 5A and B, re-
spectively), AR232–649 is significantly more active in

stimulating the ARR3tk-luc reporter than is trans-
fected AR (t-test, P < 0.05) or the endogenous AR (con-
trol in Fig. 5B). AR232–902 is inactive with respect to
induction of this promoter. The results suggest that
ARR3tk-luc is more responsive to activating functions
in the N-terminal domain than in the ligand binding
domain of the AR.

With the PB promoter (PB-luc), there is a markedly
different profile of activities (Fig. 5C,D) in the two
cell types. In PC3 cells (Fig. 5C), there is a high
background level in the absence of hormone and the
most potent transactivator tested is AR, which is three
to four times more active than either AR232–649 or
AR232–902. In LNCaP cells (Fig. 5D), the strongest in-
duction is also seen with transfected AR, but AR232–902
is more active than in PC3 cells, about 70% as potent as
AR. The androgen-independent activity of AR232–649
only contributes a slight increment (+20% to 25%) in
activity above that ascribed to the endogenous AR
(control). These results imply that PB-luc is more
strongly activated by AR constructs containing the li-
gand binding domain.

In PC3 cells, the PSA promoter (PSA-luc) has a
similar transactivation and background profile as seen
with the PB promoter, except that AR232–649 is as active
as AR (Fig. 5E). In the LNCaP cells (Fig. 5F), the results
with the PSA promoter are quite different; AR232–902 is
almost threefold more active than the transfected AR
(t-test, P < 0.001). This may be attibutable to the pres-
ence of a promoter-specific co-repressor in LNCaP
cells, which interacts with amino acids in the N-
terminal portion of the AR. AR232–649 displays very
strong transcriptional activation of PSA-luc in LNCaP

Fig. 3. Expression of AR proteins. Nuclear proteins were ex-
tracted from LNCaP (lanes 1–3) and PC3 (lanes 4–6) cells,
which had been transfected by lipofection with 2.0 µg of plasmid
expressing AR232–649 (lanes 1 and 4), AR (lanes 3 and 6), or the
empty vector (pRC/CMV) (lanes 2 and 5), and were separated on
12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE), blotted, probed with anti-androgen receptor anti-
body, and visualized with the ECL Western blotting detection kit.

Fig. 4. Transactivation of ARR3tk-luc in LNCaP cells by
AR232–649. After co-transfection with ARR3tk-luc and 0–2 µg of
AR232–649, LNCaP cells were grown in the presence (j) or ab-
sence (h) of 10 nM R1881. The results, corrected for b-
galactosidase activity, are expressed as mean (n $ 3) relative lu-
ciferase units min−1 mg protein−1.
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cells, but overall has about 55–70% of the potency of
AR232–902. Collectively, these results suggest that in
LNCaP cells activating functions in both the N- and
C-terminus make a substantial contribution to induc-
tion of PSA-luc, whereas in the less differentiated PC3
cells, the N-terminal activity predominates.

DISCUSSION

The purpose of this investigation was to study the
transactivation functions of the AR on the induction of
two well-characterized androgen-regulated genes, PB
and PSA. The in vivo expression of both of these genes
is largely confined to the prostate [38–40] and in trans-
genic experiments, the PB promoter has been shown
to confer androgen and prostate-specific expression
[41]. We hypothesize that these naturally occurring
androgen-responsive promoters uniquely support AR
transactivation. In addition, we tested the pattern of
induction of a reporter-construct (ARR3tk-luc) com-
posed of three cassettes of the PB androgen response
region (ARR) linked in tandem to a tk-promoter
[20,30,42]. The fold-induction of this reporter by an-
drogens was about 10 times higher than that observed
with the PB promoter (Fig. 1). We sought to increase
the physiological relevance of our results by perform-
ing our transfection experiments in poorly differenti-
ated (PC3) and well-differentiated (LNCaP) prostate
cancer cells, where appropriate AR accessory factors
might be expected to be found in varying abundance.

In both types of prostate cell lines, the strong ARR3
enhancer appeared to be very responsive to activating
functions located in the N-terminal domain. The
AR232–649 plasmid exhibits strong androgen-indepen-

dent transactivation on the ARR3 enhancer (Fig. 2).
Truncation of the first 231 amino acids of the N-
terminus resulted in elimination of the polyglutamine
tract, which has been reported to inhibit transactiva-
tion function [16,43]. Using the MMTV promoter in
CV-1 cells, Chamberlain et al. [19] have delineated two
AF-1 domains in the N-terminal of the AR, AF-1a
(from amino acids 154–167) and AF-1b (amino acids
295–359). Removal of either one of these domains
resulted in approximately a 50% decrease in AR activ-
ity [19]. Although the AF-1a has been deleted in
AR232–649, no drop in activity was seen here. Jenster et
al. [18] found in HeLa cells, that removal of the ligand-
binding domain resulted in a shift in the location of
the AF-1 to amino acids 360–485, which could explain
the high activity of AR232–649. A shift in AF-1 location
with the removal of the ligand-binding domain was
also seen by Ikonen et al. [25] using CV-1 and CHO
cells. These investigators also observed that AR trans-
activation was dependent upon the type of promoter
and cell type used, supporting the concept that tran-
scriptional proteins and co-effectors interact in a cell
and promoter specific manor. For instance, in COS-1
cells, deletion of the AR-polyglutamine tract had no
effect on the MMTV promoter but resulted in an in-
creased transcriptional activity of the AR on the PSA
promoter [44]; showing that different promoters give
different results. Also, Gordon et al. [45] found that
the MMTV-CAT was more active in stably expressed
AR cells of prostate origin than of hepatoma origin,
indicating that the type of cell line used is also impor-
tant. In any event, the net induction of ARR3tk-luc by
AR232–649 is greater than that observed with full-length
AR in prostate cells.

Fig. 5. Differential induction of ARR3tk, PB, and
PSA promoters. PC3 (A,C,E) and LNCaP (B,D,F)
cells were transfected by lipofection with 0.5 µg of
plasmid expressing AR, AR232–649, AR232–902, or
empty vector control (pRC/CMV) together with 1
µg of ARR3tk-luc (A,B), PB-luc (C,D), or PSA-luc
(E,F) and 0.5 µg of gal reporter plasmid CH110. The
cells were grown in the presence (black bars) or
absence (gray bars) of 10 nM R1881. The results are
expressed as the mean (±SD; n $ 3) relative %
activity, with AR values in the presence of androgen
set to 100% in each case. The actual 100% mean
values in luciferase units min− mg protein− are as
follows: A: 16.7 ×106; B: 14.5 ×106; C: 2.9 ×106; D:
3.4 ×106; E: 1.8 ×106; F: 1.0 ×106.
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In contrast to the ARR3tk promoter, the PB pro-
moter was more responsive to the full-length AR than
to AR232–649 in PC3 cells. Similarly, in LNCaP cells,
induction of PB-luc with AR232–649 was far less than
that observed with AR and AR232–902, implying that
the PB promoter also requires the involvement of the
ligand binding domain.

Experiments with the PSA promoter suggest that
the predominant transactivator in PC3 cells resides in
the N-terminal domain, while in LNCaP cells, the li-
gand binding domain also contributes to its induction.
In both cell lines, AR232–649 equals or slightly exceeds
the full-length AR in stimulating the PSA-luc reporter.
However, in LNCaP cells AR232–902 is associated with
the highest levels of luciferase activity. One interpre-
tation of this observation is that LNCaP cells contain a
co-repressor that normally interacts with residues
within the first 231 amino acids of the AR N-terminal
to modulate the expression of the PSA gene.

Overall, the results indicate that AR transactivation
is cell and promoter dependent. This may be attribut-
able in large part to the relative availability of acces-
sory co-effectors proteins that may interact with spe-
cific promoters and/or different regions of the AR to
modulate AR-induced transcription.
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