Analytical Department and Biochemical Research Department, Robapharm Ltd., Basle

Chromatographic Studies on Rumalon

By G. Pataki, E. Strasky, W. Weigel and P. Frei

Introduction

RUMALON®, produced by Robapharm Ltd., Basle, is an extract of cartilage and red bone-marrow. It is proven to be clinically efficient in osteo-arthritis cases of various localization. In spite of the fact that RUMALON® is a tissue extract, it is possible to have some information about its chemical composition. A large number of analytical data regarding the composition of RUMALON® has been made available using chromatographic methods, e.g. paper-, thin-layer- and column-chromatography.

Our chromatographic research concerning RUMALON® consists of two parts: on the one hand, using paper-, thin-layer- and column-chromatography attempts were made to detect and determine biological important compounds, such as nucleic acid derivatives, amino acids and peptides directly, on the other hand, experiments were carried out, applying different column-chromatographic methods, to fractionate the cartilage extract.

Methods

(Technical Assistance: A. Kunz)

Thin-layer chromatography of nucleo-derivatives (Pataki 1967) was carried out on purified cellulose layers with the following solvents: n-propanol/25% ammonia/water (6:3:1 v/v) and isopropanol/saturated ammonium sulphate/water (2:79:19 v/v). Qualitative analysis of amino acids was performed by thin-layer chromatography (Pataki 1966) on Silica Gel, containing starch, with n-butanol/acetic acid/water (4:1:1 v/v) and phenol/water (3:1 v/v). Screening of column-chromatographic fractions was also made by high-volt electrophoresis on

Received: November 8, 1957.
Whatman No. 1-paper (buffer: 0.75 M formic acid, pH = 2; 4000 V; 55–60 mA; 45 min). Mucopolysaccharides were separated by paper-chromatography (Schleicher & Schuell 2043 Bngl; n-propanol/25% ammonia/water 49:60:5 v/v, or 9 ml 0.2 M Na₂HPO₄ + 16 ml 0.12 M NaH₂PO₄ + 75 ml water + 25 ml n-propanol) and paper electrophoresis (Whatman No. 1-paper; HCl/KCl buffer pH = 1.2; 110 V; 10–15 mA, 6 hours). Amino acids were detected by Ninhydrin (cf. Pataki 1966), nucleo-derivatives were visualized in UV-light (254 and 360 nm) and mucopolysaccharides were stained by Toluidinblue (Merck staining reagent Nr. 222).

Quantitative analyses of amino acids were performed according to Moore and Stein (Spackman, Stein and Moore 1958), using an automatic analyzer, by Dr. Curtius (Paediatr. Univ. Clinic, Zurich, Switzerland).

Fractionations of the cartilage extract were performed using Sephadex G-25; Sephadex G-15; DEAE-cellulose and Cellulose with an Ultrorac fraction collector and automatic registration (Recorder 6520 H) of the ultraviolet absorption (LKB, Stockholm, Sweden).

Biological assays in cell culture test (Kurzel and Domenjoy) were carried out by Dr. Kurzel (Institute of Pharmacology, University of Bonn, Germany).

Activity measurements in ³⁵S uptake test were performed according to Weigel and Jasiński (Weigel and Jasiński, 1962).

Results and Discussion

In order to detect nucleic acid bases, nucleosides and nucleotides in RUMALON®, experiments have been made using our paper- and thin-layer-chromatographic techniques (Pataki, 1967; Pataki and Strasky, 1968). As shown in Figure 1 about twenty absorbing and two fluorescent spots were observed on thin-layer

Fig. 1. Detection of nucleic acid bases, nucleosides, nucleotides and related compounds in Rumalon®. UV-photography. According to Pataki (1937). Some of the minor spots are not visible on the reproduction.
chromatograms. Similar results can be obtained by paperchromatography. Tentative identification of nucleo-derivatives was made by the well-known spot-strengthening technique (e.g. Stahl, 1967; Randerath, 1965; Pataki, 1966). The results are shown in Figure 2. As we can see, there also have been a few unknown spots detected. Further experiments to identify these compounds and to verify our findings, applying different separation and spectroscopic techniques, are now under way. The identification of nucleic acid derivatives in RUMALON® is especially important, since, as it will be shown later in this paper, these substances, among others, were detected in a biologically active fraction, obtained from the cartilage extract.

![Diagram of nucleic acid derivatives]

Fig. 2. Chromatographic identification of nucleic acid bases, nucleosides, nucleotides and related compounds in Rumalon® (schematical).

Quantitative analyses of amino acids were made by column-chromatography, using an automatic analyzer according to Moore and Stein (Spackman, Stein and Moore, 1958). The results are shown in Table I. It is especially worthy of note that the amounts of amino acids increase after hydrolysis, that means not only free amino acids but also bound amino acids are present in RUMALON®. This fact is not a surprise, since it was possible to isolate a highmolecular mucopolysaccharide-polypeptide complex of cartilage extract (Kalbhen, 1966; Karzel, Kalbhen and Domenjoz, 1966). We are of the opinion that RUMALON® also contains other polypeptides, since a number of spots on thin-layer chromatograms cannot be ascribed to free amino acids. The presence of
TABLE I

Free and bound amino acids in Rumalon® determined by column chromatography, according to Spackman, Stein and Moore

<table>
<thead>
<tr>
<th>Compound</th>
<th>before hydrolysis</th>
<th>after hydrolysis</th>
<th>Compound</th>
<th>before hydrolysis</th>
<th>after hydrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taurin</td>
<td>2.41</td>
<td>2.31</td>
<td>Cystathionine</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>Urea</td>
<td>2.17</td>
<td>1.66</td>
<td>Methionine</td>
<td>0.22</td>
<td>2.25</td>
</tr>
<tr>
<td>Methioninsulfoxide</td>
<td>0.56</td>
<td>0.38</td>
<td>Isoleucine</td>
<td>0.74</td>
<td>4.49</td>
</tr>
<tr>
<td>Hydroxyproline</td>
<td>0.15</td>
<td>5.84</td>
<td>Leucine</td>
<td>1.68</td>
<td>13.04</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>1.37</td>
<td>18.31</td>
<td>Tyrosine</td>
<td>1.00</td>
<td>4.36</td>
</tr>
<tr>
<td>Threonine</td>
<td>0.54</td>
<td>12.24</td>
<td>Phenylalanine</td>
<td>0.98</td>
<td>6.43</td>
</tr>
<tr>
<td>Serine</td>
<td>0.97</td>
<td>7.33</td>
<td>β-Alanine</td>
<td>0.07</td>
<td>1.41</td>
</tr>
<tr>
<td>Asparagine + Glutamine 1</td>
<td>0.37</td>
<td>—</td>
<td>β-Hydroxylsine 1</td>
<td>traces</td>
<td>0.50</td>
</tr>
<tr>
<td>Sarcosine</td>
<td>traces</td>
<td>traces</td>
<td>γ-Aminobutiric acid</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Proline</td>
<td>2.22</td>
<td>14.43</td>
<td>Ornithine</td>
<td>0.56</td>
<td>0.94</td>
</tr>
<tr>
<td>Glutamin acid</td>
<td>8.39</td>
<td>31.72</td>
<td>Ethanolamine</td>
<td>0.38</td>
<td>—</td>
</tr>
<tr>
<td>Citrulline</td>
<td>0.36</td>
<td>traces</td>
<td>Lysine</td>
<td>1.54</td>
<td>11.30</td>
</tr>
<tr>
<td>Glycine</td>
<td>4.32</td>
<td>21.55</td>
<td>1-CH₃-Histidine</td>
<td>0.08</td>
<td>0.68</td>
</tr>
<tr>
<td>Alanine</td>
<td>4.99</td>
<td>13.89</td>
<td>Histidine</td>
<td>0.34</td>
<td>7.11</td>
</tr>
<tr>
<td>α-Aminobutiric acid</td>
<td>0.37</td>
<td>0.51</td>
<td>Tryptophane</td>
<td>0.16</td>
<td>2.31</td>
</tr>
<tr>
<td>Valine</td>
<td>1.34</td>
<td>8.01</td>
<td>Creatinine</td>
<td>57.37</td>
<td>19.56</td>
</tr>
<tr>
<td>1/2 Cystine</td>
<td>0.09</td>
<td>traces</td>
<td>Arginine</td>
<td>0.53</td>
<td>11.00</td>
</tr>
</tbody>
</table>

1 One of the β-Hydroxylsines is the allo modification.
2 These values are probably too high, maybe due to the presence of compounds which were formed by hydrolysis.

polypeptides will now be investigated, since, as it will be pointed out later in this paper, a biologically active fraction of the cartilage extract probably contains some peptides, besides other substances.

In previous studies two different active principles in RUMALON® have been demonstrated. Karzel and Domenjoz (Karzel and Domenjoz, 1963) have found a stimulating effect of RUMALON® on the production of mucopolysaccharides by cells cultivated in vitro. Weigel and Jasiński, 1962 have shown, on the other hand, that the in vitro uptake of 35S in the rat cartilage is significantly increased by RUMALON®. There is no doubt that the stimulation of mucopolysaccharide production in tissue cultures can be ascribed to the highmolecular substances contained in RUMA-
LON® (Karzel, Kalbhen and Domenjoz, 1966; Kalbhen, Karzel and Domenjoz, 1966; Kalbhen, 1966; Kalbhen, Karzel, Pritz and Domenjoz, 1967; Karzel, Kalbhen and Domenjoz, 1967). This highmolecular fraction, designed as DAK-16, has been isolated, subsequently by Kalbhen et al. (Kalbhen, 1966; Kalbhen, Karzel and Domenjoz, 1966) either by precipitation or by gel-chromatography on Sephadex G-25 coarse (Fig. 3) and has been found to be active in tissue cultures (Fig. 4). The lowmolecular substances contained in RUMALON® have been found, on the other hand, inactive in this biological assay. Investigations in our Biochemical Department have shown that the lowmolecular fraction of RUMALON® (cf. Fig. 3) is capable of activating the in vitro uptake of ^35S in the cartilage. Subsequently, we have found that the substances with lowmolecular weight can be more efficiently separated using Sephadex G-25 fine and longer columns (Fig. 5). The partial resolution of the highmolecular fraction into two peaks is probably due to some adsorption effects which can be observed on high cross-linked Sephadex, especially if water is used as eluent.

Finally, we would like to mention that about 5–10% of the material applied to the column cannot be recovered with water, and, as indicated in Figure 5, solvent change is necessary to elute this part of the extract. This phenomenon can most probably be ascribed besides adsorption to the ion-exchange properties of Sephadex. The activity of the lowmolecular fractions, according to Figure 5, in ^35S test is now being investigated; they are, of course, inactive in tissue cultures.

DAK-16, the highmolecular part of RUMALON®, is excluded even by Sephadex G-200, which indicates a much higher molecular weight as was found by ultracentrifugation, namely 55 000 ± 10 000 (Kalbhen, 1966). As already mentioned, a partial resolution of this fraction into two peaks can be observed on Sephadex G-25 fine. Very recently Kalbhen et al. (Kalbhen, Karzel, Pritz and Domenjoz, 1967; Karzel, Kalbhen and Domenjoz, 1967) were able to fractionate DAK-16 into three fractions by ion-exchange chromatography on Dowex-1 × 2. The activity measurements in tissue cultures are, as far as we are aware, not yet completed. We were also able to obtain three fractions using Sephadex G-15. DAK-16 has been characterized as a mucopolysaccharide-polypeptide complex (Kalbhen, 1966; Kalbhen, Karzel and Domenjoz, 1966), and it has been subsequently found that the peptide part is
Fig. 3. Isolation of a highmolecular mucopolysaccharide-polypeptide complex of cartilage extract by gel-chromatography on Sephadex G-25 coarse, according to Kalbhen et al. (Kalbhen, 1966; Karzel, Kalbhen and Domenjoz, 1966).

Fig. 4. Action of the fractions of a cartilage extract (cf. Fig. 3) on the mucopolysaccharide content in culture medium of fibroblasts according to Karzel et al. (Karzel, Kalbhen and Domenjoz, 1966).

Fig. 5. Fractionation of cartilage extract on Sephadex G-25 fine.
important as being active in tissue culture test (Kalbhen, Karzel, Pritz and Domenjoz, 1967).

In order to obtain some evidence on the chemical nature of substances which are active in 35S-incorporation test, we are investigating the low-molecular substances of RUMALON® in further detail. Some of our results have already been mentioned at the beginning of this paper. The fractionation of the cartilage extract on DEAE-cellulose (OH-form) is shown in Figure 6. As we can see two UV-positive peaks can be observed. The second UV-positive peak contains, for instance, all the nucleo-derivatives. Thin-layer-chromatography and high-volt electrophoresis have shown that the fractions I, II, III and IV contain ninhydrin-positive material, e.g. amino acids, amines, peptides. Fraction V has given on Sili-
gel thin-layers, in solvents suitable for the analysis of amines, amino acids and peptides, only one spot at the origin, which indicates the high molecular weight of this substance. As a matter of fact, further investigations have shown that this substance, or these substances, can be detected by Toluidinblue, that means it is, or they are, mucopolysaccharide-like compounds. Since no UV-absorption could be observed, this, or these, mucopolysaccharides do not contain any peptide chain and cannot be identical with DAK-16. As already mentioned, the peptide part seems to be a requisite for the activity in tissue cultures. We would, therefore, assume that fraction V shows no activity in this biological assay. Dr. Karzel was kind enough to investigate our fraction V, and found, in fact, no activity. Activity measurements by 35S-uptake assay have been carried out in our Biochemical Department. The results are shown in Table II. These preliminary results indicate that fraction III exhibits an activity, whereas the other fractions show no activity at all. Of course the sum of fractions I to V, as given in the table, shows approximately the same activity as fraction III. The difference between the activity of the starting material and fraction III (cf. Table II) is, as a statistical analysis proved, not significant. In order to prove the significance of the activity which has been found in fraction III, measurements were made on greater experimental material; the results are shown in Table III. Since fraction III contains amino acids and nucleic acid derivatives, an artificial mixture of amino acids found in RUMALON® (cf. Table I) has been made and activity measurement by 35S-uptake assay has been carried out. As Table IV shows,
Fig. 6. Fractionation of cartilage extract on DEAE-Cellulose.

Fig. 7. Fractionation of cartilage extract on Sephadex G-15.

Fig. 8. Fractionation of cartilage extract on cellulose.
TABLE II

Stimulation of in vitro uptake of 35S in the rat cartilage by cartilage extract and its fractions according to Figure 6

<table>
<thead>
<tr>
<th></th>
<th>cpm/100 mg dry substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>937 ± 100</td>
</tr>
<tr>
<td>Cartilage extract</td>
<td>1236 ± 270 1</td>
</tr>
<tr>
<td>Fractions 1–55 (I)</td>
<td>850 ± 234</td>
</tr>
<tr>
<td>Fractions 56–160 (II)</td>
<td>762 ± 164</td>
</tr>
<tr>
<td>Fractions 161–190 (III)</td>
<td>1109 ± 170 1, 2</td>
</tr>
<tr>
<td>Fractions 192–220 (IV)</td>
<td>858 ± 128</td>
</tr>
<tr>
<td>Fractions 221–315 (V)</td>
<td>901 ± 150</td>
</tr>
<tr>
<td>Fractions 1–315 (I–V)</td>
<td>1141 ± 211 2</td>
</tr>
</tbody>
</table>

1 These two mean values are identical according to t-test.
2 These two mean values are identical according to t-test.

TABLE III

Statistical analysis of 35S uptake by fractions of a cartilage extract (compare text and Tab. II)

<table>
<thead>
<tr>
<th></th>
<th>cpm/100 mg dry substance 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>29 790 ± 1040 2, 3</td>
</tr>
<tr>
<td>Fractions 1–315 (I–V)</td>
<td>32 950 ± 2470 2</td>
</tr>
<tr>
<td>Fractions 161–190 (III)</td>
<td>33 125 ± 3050 2</td>
</tr>
</tbody>
</table>

1 n = 12.
2, 3 The differences are significant (p < 0.0005).

TABLE IV

Effect of an artificial amino acid mixture (cf. Tab. I) on the in vitro uptake of 35S in the rat cartilage

<table>
<thead>
<tr>
<th></th>
<th>cpm/100 mg dry substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2006</td>
</tr>
<tr>
<td>Amino acids 1</td>
<td>2118</td>
</tr>
<tr>
<td>Amino acids 2</td>
<td>2294</td>
</tr>
<tr>
<td>Rumalon3</td>
<td>3258</td>
</tr>
</tbody>
</table>

1 Concentration as given in Table I.
2 Concentration five times more than given in Table I.
such an artificial amino acid mixture does not exhibit any activity. This finding indicates that the activity cannot be ascribed to the amino acids contained in RUMALON®. Similar experiments with nucleic acid derivatives are in progress.

Finally, experiments were made (one of them has been shown in Figure 4) to fractionate the cartilage extract: we have used Sephadex G-25 fine (Fig. 5), Sephadex G-15 (Fig. 7) as well as cellulose (Fig. 8). Chemical and biological characterization of these fractions is now being investigated and will be reported soon.

Summary

Using thin-layer chromatography, a great number of nucleic acid derivatives was detected in RUMALON®. Quantitative analyses of amino acids before and after hydrolysis have proven the presence of bound amino acids, besides free amino acids. The fractionation of the cartilage extract in RUMALON® by column-chromatography on DEAE-Cellulose, cellulose, Sephadex G-25 fine and Sephadex G-15 is reported. One of the fractions isolated on DEAE-cellulose has been found capable of activating the in vitro uptake of 35S in the cartilage. Preliminary characterization of this fraction was carried out by thin-layer chromatography and high-volt electrophoresis; nucleic acid derivatives, as well as ninhydrin-positive compounds, e.g. amino acids and possibly peptides, were found. An artificial mixture of amino acids which are present in RUMALON® was found, on the other hand, inactive in 35S-uptake assay.

References

Author's address: Dres. G. Pataki, E. Strasky, W. Weigel and P. Frei, Robapharm Ltd., CH-4000 Basle 6 (Switzerland).