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ABSTRACT

Type 2 diabetes mellitus (T2DM) is a global 
epidemic with increasing impact on individu-
als and healthcare providers. Available treat-
ments (such as metformin, sulfonylureas, 
glitazones, and insulin) have proven unsat-
isfactory in producing a long-lasting impact 
on glycemic control. In addition, most of 
these treatments have undesirable side effects 
such as weight gain and hypoglycemia. As a 
result, exploring new treatment targets and 
new therapies is mandatory in order to treat 
this condition. The incretin pathway, in par-
ticular glucagon-like peptide (GLP-1), plays 

an important pathological role in the devel-
opment of T2DM, and treatments targeting 
the incretin system have recently become 
available. These can mainly be divided into 
two broad categories; GLP-1 agonists/analogs 
(exenatide, liraglutide), and dipeptidyl pepti-
dase-4 (DPP-4; the enzyme responsible for 
rapid inactivation of incretins) inhibitors (sit-
agliptin, vildagliptin). Saxagliptin is a novel 
DPP-4 inhibitor that has recently completed 
phase 3 studies. Saxagliptin is a potent and 
specific inhibitor of DPP-4 (in comparison 
with other dipeptidyl peptidase enzymes) that 
is given once daily. Current data suggest that 
saxagliptin as monotherapy or in combina-
tion with metformin, glyburide, or a glitazone 
results in significant reductions in fasting and 
postprandial plasma glucose and hemoglobin 
A1c (HbA1c). Saxagliptin is well tolerated and 
does not increase hypoglycemia compared 
with the placebo, and is probably weight neu-
tral. Saxagliptin will be a new effective drug 
in the currently available variety of antidia-
betic medications for patients with T2DM.

Keywords: DPP-4; GLP-1; hypoglycemia; 
incretin; saxagliptin; sitagliptin; type 2 dia-
betes mellitus; vildagliptin 
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a glo-
bal epidemic with an estimated prevalence of 
6% (246 million people) worldwide in 2007, 
which is forecast to rise to 7.3% (380 million 
people) by 2025.1 The health, social, and eco-
nomic burden of T2DM is significant;2-4 con-
sequently, T2DM presents a major challenge 
to healthcare systems around the world. 

T2DM is a complex disorder in which 
the interaction between environmental and 
genetic factors results in the development of 
insulin resistance (IR) and β-cell dysfunc-
tion.5,6 Although IR is an important predis-
posing factor, β-cell dysfunction is the critical 
step in T2DM development.5,6 Obesity is the 
single most important contributor to IR; how-
ever, most obese insulin-resistant individuals 
do not develop T2DM6-8 because their β-cells 
are capable of producing significantly ele-
vated levels of insulin to maintain glycemic 
control.8-11 Hence, the failure of β-cells to 
secrete sufficient insulin to overcome IR (ie, 
β-cell dysfunction) is the crucial step in the 
development and progression of T2DM.8,12 In 
addition to β-cell dysfunction, patients with 
T2DM have α-cell dysfunction, which man-
ifests as elevated glucagon secretion in the 
presence of hyperglycemia.13

Based on the current understanding of the 
pathophysiology of T2DM, multiple phar-
macological and nonpharmacological inter-
ventions have been developed over the past 
five decades to improve glycemic control and 
slow disease progression (Figure 1). However, 
these agents have largely been disappointing 
in the sense that most of the observed ini-
tial improvements in glycemic control are not 
sustained because of the progressive nature of 
β-cell dysfunction.14,15 Furthermore, most of 
these treatments have undesired side effects: 

sulfonylureas (SUs) increase insulin secre-
tion, but are associated with hypoglycemia 
and weight gain;14 metformin reduces hepatic 
glucose output, is weight neutral, and is not 
associated with hypoglycemia, but has a rela-
tively high frequency of gastrointestinal side 
effects;14 thiazolidinediones (TZDs) improve 
β-cell function and reduce IR, but are associ-
ated with weight gain and can cause periph-
eral edema;14 meglitinides improve insulin 
secretion from β-cells, but increases the 
incidence of hypoglycemia and weight gain 
compared with metformin;16 finally, insulin 
therapy produces sustainable glycosylated 
hemoglobin A1c (HbA1c) reductions and might 
improve β-cell function, but causes hypoglyc-
emia and weight gain.14 Hence, interventions 
that can slow and/or reverse β-cell decline, 
which result in weight loss and do not result 
in hypoglycemia, might be expected to have a 
significant sustained impact in patients with 
T2DM. Incretin-based therapies are a new class 
of antidiabetic medication that may address 
some of the abovementioned shortfalls of cur-
rent treatments. 

Figure 1. Currently available pharmacotherapy in patients
with type 2 diabetes mellitus. DPP-4=dipeptidyl peptidase-4;
GLP-1=glucagon-like peptide.
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The Incretin System and T2DM

The possibility that intestinal factors are 
secreted in response to nutrients and can 
lower blood glucose levels was first described 
in the early twentieth century.17,18 These fac-
tors were named “incretins” in the 1930s.17 The 
incretin effect was first described by Elrick et 
al.,19 following the observation that the insu-
lin response to oral glucose exceeded that 
measured after intravenous administration of 
equivalent amounts of glucose. The incretins 
are secreted from the gastrointestinal tract 
during food intake and bind to receptors on 
β-cells, resulting in insulin secretion.20 Both 
glucagon-like peptide-1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP) 
bind to specific G-protein-coupled receptors 
located in the pancreas, stomach, skeletal 
muscle, heart, lung, and brain.21 In healthy 
individuals, the incretin effect is responsi-
ble for 50%-70% of the insulin response to 
a meal.22 GIP is secreted from the K-cells in 
the duodenum and jejunum in response to 
the ingestion of carbohydrates and/or lip-
ids,17,23,24 and results in glucose-dependent 
insulin secretion in humans.17,24,25 In addi-
tion, GIP is associated with lipid metabolism 
in adipocytes and has a proliferative effect on 
β-cells.24,26,27 GLP-1 is secreted from the L-cells 
in the distal ileum and colon.17,24 GLP-1 has a 
number of functions, including stimulation of 
glucose-dependent insulin secretion, glucose-
dependent suppression of glucagon secretion, 
slowing of gastric emptying, reduction of food 
intake, and possibly improved insulin sensi-
tivity.20,22,28 In addition, GLP-1 increases insu-
lin gene transcription and all steps of insulin 
biosynthesis.29,30 Animal studies have shown 
that GLP-1 increases β-cell mass, maintains 
β-cell efficiency, and reduces β-cell apopto-
sis.28,31 GLP-1 and GIP contribute to and poten-

tiate glucose-dependent insulin secretion in 
an additive manner, but GLP-1 appears to 
be responsible for most of the incretin effect 
on the β-cell.17,20 Although GLP-1 levels are 
reduced in patients with T2DM, their response 
to exogenous GLP-1 remains intact.

Dipeptidyl Peptidase-4 (DPP-4) and DPP-4 
Inhibitors

Incretins are rapidly degraded by the 
enzyme DPP-4.17 DPP-4 cleaves the active pep-
tide at the position 2 alanine (N-terminal) 
resulting in inactive peptide.24 DPP-4 is 
widely expressed in human tissues includ-
ing the brain, lungs, kidneys, adrenals, pan-
creas, intestine, and lymphocytes.24 DPP-4 has 
effects beyond its proteolytic action, includ-
ing T-cell proliferation.32 In addition, many 
neuropeptides, growth factors, cytokines, and 
chemokines have been identified as potential 
DPP-4 substrates.32

DPP-4 is found in the endothelial cells of 
the blood vessels that drain the intestinal 
mucosa where the L-cells are situated.24,33 This 
suggests that most GLP-1 is inactivated almost 
immediately following secretion. This rapid 
inactivation of GLP-1 and GIP contributes to 
a half-life (t½) of less than 2 minutes and 5-7 
minutes, respectively.17,24,34,35 Thus, the short 
half-life of incretins limits their therapeutic 
potential. DPP-4 belongs to a whole enzyme 
family of endopeptidases;32,36 therefore, to 
inhibit DPP-4 exclusively, DPP-4 inhibi-
tors need to be highly specific. Inhibition of 
DPP-4 leads to elevated levels of endogenous 
uncleaved, biologically-active incretins and 
prolongs their action.37 However, endogenous 
GLP-1 levels obtained with DPP-4 inhibitors 
are lower than those provided by pharma-
cological administration of injectable GLP-1 
analogs.30,38 
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Preclinical studies for DPP-4 inhibitors 
showed enhancement of the biological actions of 
GLP-1 receptor agonists, including an improve-
ment in insulin secretion, and promotion of 
β-cell proliferation, β-cell regeneration, neogen-
esis, islet-cell function and survival, and insu-
lin biosynthesis.30,39-42 DPP-4 inhibitors, unlike 
GLP-1 analogs, do not cause significant decreases 
in body weight and are generally regarded as 
weight neutral.30 A range of DPP-4 inhibitors are 
approved or are in development: sitagliptin is 
approved in the USA and Europe; vildagliptin 
is approved in Europe; saxagliptin and aloglip-
tin are currently undergoing phase 3 studies; 
and several others are currently in phase 1 and 
2 studies. Sitagliptin and vildagliptin, when 
administered as monotherapy or in combination 
with other hypoglycemic agents (including met-
formin, SUs, and pioglitazone), lowered HbA1c, 
fasting glucose levels, and postprandial glucose 
levels.30,43 Further details on the clinical efficacy 
and safety of sitagliptin and vildagliptin, includ-
ing interactions with other drugs, are discussed 
in the paper by Richter et al.44 

SAXAGLIPTIN

Development

Saxagliptin is a novel DPP-4 inhibitor devel-
oped by Bristol-Myers Squibb and AstraZeneca 
for the treatment of T2DM. Saxagliptin has 
recently completed its phase 3 clinical pro-
gram. Details on the development and pre-
clinical profile of saxagliptin can be found in 
the paper by Augeri et al.45

Pharmacokinetics and Pharmacodynamics

Saxagliptin is a selective, durable, but 
reversible inhibitor of DPP-4 (Figure 2). At 
37°C, saxagliptin has an inhibition constant 

(Ki) of 1.3±0.3 nM (n=12) for DPP-4 inhi-
bition, which is 10-fold more potent than 
either vildagliptin (13±3 nM) or sitagliptin  
(18±2 nM).46 Saxagliptin demonstrates greater 
specificity for DPP-4 than for either the DPP-8 
or DPP-9 enzymes (400- and 75-fold, respec-
tively).46 The active metabolite of saxaglip-
tin (BMS-510849) is two-fold less potent than 
the parent. Both saxagliptin and its metabo-
lite are highly selective (>4000-fold) for the 
inhibition of DPP-4 compared with a range 
of other proteases (selectivity of sitaglip-
tin and vildagliptin for DPP-4 is >2600 and 
32-250-fold, respectively, compared with 
DPP-8/9).44 Dissociation of saxagliptin and its 
metabolite from DPP-4 is slow, with a t½ of 
50 and 23 minutes, respectively (sitagliptin 
and vildagliptin have a t½ of 1 and 1.7 hours, 
respectively).44 Slow dissociation of saxaglip-
tin from DPP-4 has not been observed with 
any other enzymes tested, including DPP-8 
and DPP-9.46,47 Preclinical studies suggest that 
saxagliptin shows a high sensitivity for DPP-4 
(the half maximal inhibitory concentration 
[IC50]=3.5, 18, and 26 nM for vildagliptin, 
sitagliptin, and saxagliptin, respectively).32 
Conversely, saxagliptin demonstrates a low 
affinity for DPP-8 and DPP-9 (IC50 for DPP-
8=9 and >50 nM for vildagliptin and sitaglip-
tin, respectively; IC50 for DPP-9= >50 nM for 
sitagliptin).32

Figure 2. (A) Saxagliptin (dipeptidyl peptidase-4 Ki=1.3 nM).
(B) BMS-510849 (active metabolite of saxagliptin; dipeptidyl
peptidase-4 Ki=2.6 nM).
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The pharmacokinetic and pharmacody-
namic properties of saxagliptin were investi-
gated in two double-blind, randomized, 2-week 
studies. In the first study, 40 patients with 
T2DM received once-daily doses of saxagliptin 
2.5-50 mg, or a placebo; in the second study, 
50 healthy individuals received once-daily 
doses of saxagliptin 40-400 mg, or a placebo. 
Systemic exposure to saxagliptin was shown 
to be dose proportional, and pharmacokinetic 
parameters were similar in patients with T2DM 
and in healthy individuals. Saxagliptin inhib-
ited DPP-4 at all doses studied, with doses 
greater than 150 mg providing the same max-
imal inhibition (Figure 3).48 

The impact of age and/or gender was 
assessed in a study of 56 healthy partici-
pants.13 It was shown that saxagliptin expo-
sure was slightly increased (less than twofold) 
in elderly individuals (aged ≥65 years) follow-
ing a single oral 10 mg dose, compared with 
younger individuals (aged 18-40 years). In the 

same study, only small differences in saxaglip-
tin pharmacokinetics were observed between 
healthy male and female participants. The 
authors of the study concluded that no dos-
age adjustment for saxagliptin was neces-
sary on the basis of age or gender.49 Similarly, 
the pharmacokinetics of sitagliptin and vild-
agliptin do not seem to be affected by age or 
gender.44

The impact of hepatic impairment on the 
pharmacokinetics of saxagliptin (10 mg) was 
assessed in one study,46 comparing 18 patients 
with hepatic impairment (based on Child-
Pugh scores, class A-C)50 with 18 matched 
healthy individuals. A less than twofold dif-
ference was observed for the pharmaco- 
kinetics of saxagliptin, or its active metabo-
lite, in patients with any category of hepatic 
impairment compared with healthy individu-
als. Thus, the authors stated that no dosage 
adjustment for saxagliptin would be required 
when treating patients with hepatic impair-

Figure 3. Plasma dipeptidyl peptidase-4 activity in multiple ascending-dose studies. CV181-002 and CV181-010 data are means.
DPP-4=dipeptidyl peptidase 4.48

20

0

–20

–40

0 4 8 12
Day 1

16 20 24

Type 2 diabetic placebos (CV181-002, n=7 or 8)

Healthy placebos (CV181-010, n=10)

2.5 mg (n=6)

5 mg (n=5 or 6)

15 mg (n=6)

30 mg (n=6)

40 mg (n=10)

50 mg (n=4 or 6)

100 mg (n=6)

150 mg (n=6)

200 mg (n=5 or 6) 400 mg (n=6)

300 mg (n=6)

–60

–80

–100

Pl
as

m
a D

PP
-4

 ac
tiv

ity
(%

 ch
an

ge
 fr

om
 b

as
el

in
e)

20

0

–20

–40

0 4 8 12
Day 14

Time post-dose (h) Time post-dose (h)

16 20 24

–60

–80

–100

Pl
as

m
a D

PP
-4

 ac
tiv

ity
(%

 ch
an

ge
 fr

om
 b

as
el

in
e)



254 Adv Ther (2009)  26(3):249-262.

ment.51 Hepatic insufficiency does not seem 
to alter the pharmacokinetics of sitagliptin or 
vildagliptin.44 

Patients with T2DM usually require a com-
bination of two or more antidiabetic drugs, 
such as metformin, a TZD, or a SU, to main-
tain effective glycemic control (HbA1c, <7%).52 
When two or more drugs are coadministered 
in patients there is a possibility that the phar-
macokinetics of one drug can be affected by an 
interaction with the second drug. Thus, new 
antidiabetic agents need to be tested along-
side existing treatments to evaluate whether 
their pharmacokinetics are affected. The 
pharmacokinetics of saxagliptin in combina-
tion with metformin, pioglitazone (a TZD) or 
glyburide (an SU) were investigated in healthy 
male participants in three separate studies. 
In one study, the effect of coadministering 
metformin 1000 mg and saxagliptin 100 mg 
on the single-dose pharmacokinetics of each 
individual drug was investigated in 16 healthy 
males.49 Metformin coadministration lowered 
saxagliptin Cmax (the maximum plasma con-
centration of the drug; geometric mean 0.79; 
90% CI 0.71, 0.87) although the authors of 
the study concluded that this was unlikely to 
be of clinical consequence. Metformin did not 
affect the overall exposure of saxagliptin or its 
metabolite, and saxagliptin did not alter the 
overall exposure of metformin.53 In a second 
study, the effect of coadministering pioglita-
zone 45 mg (a CYP2C8 and CYP3A substrate), 
and saxagliptin 10 mg for 5 days on the 
steady-state pharmacokinetics of each individ-
ual drug was analyzed in 30 healthy male par-
ticipants.50 Coadministration of pioglitazone 
did not alter the pharmacokinetics of saxaglip-
tin or its metabolite. Although saxaglip-
tin increased pioglitazone Cmax by 14%, the 
authors did not consider this to be clinically 
relevant.53 In a third study, the effect of coad-

ministering glyburide 5 mg with saxagliptin 
10 mg on the single-dose pharmacokinetics 
of each individual drug was investigated in 
30 healthy male participants.48 Glyburide did 
not alter the pharmacokinetics of saxagliptin 
or its metabolite. Saxagliptin increased glybu-
ride Cmax by 16%, although the authors did 
not consider this to be of clinical relevance.53 
Based on their findings, the authors of these 
three studies concluded that saxagliptin can 
be coadministered with metformin, pioglita-
zone, or glyburide without any requirement 
for dosage adjustment of either drug.53

Phase 2 Trials

The efficacy and safety of saxagliptin 
monotherapy was investigated in a rand-
omized, double-blind, placebo-controlled, 
phase 2 study in drug-naïve patients with 
inadequately-controlled T2DM (HbA1c, 6.8%-
9.7%).54,55 Drug-naïve patients received either 
a low (2.5-40 mg; n=338) or high (100 mg; 
n= 85) dose of saxagliptin once daily for 
12 or 6 weeks, respectively. At week 12 in 
the low-dose cohort (mean baseline HbA1c, 
7.9%), all saxagliptin doses provided signifi-
cant (P<0.007) reductions in adjusted-mean 
HbA1c change from baseline (range –0.72% to 
–0.90%) compared with the placebo (–0.27%; 
Figure 4).54,55 A higher proportion of patients 
achieved glycemic control (HbA1c, <7%) with 
saxagliptin treatment (41%-53%) compared 
with the placebo (20%).54,55 Saxagliptin also 
provided greater reductions in fasting plasma 
glucose (FPG; 11-22 mg/dL) and postpran-
dial glucose (PPG; 24-41 mg/dL) compared 
with the placebo (an increase of 3 mg/dL and 
a reduction of 1 mg/dL, respectively).54,55 At 
week 6 in the high-dose cohort (mean baseline 
HbA1c, 7.7%), saxagliptin 100 mg treatment 
demonstrated similar results to the low-dose 
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cohort with an adjusted-mean HbA1c change 
from baseline of –1.09%, compared with 
the placebo (–0.36%).54,55 In both cohorts, 
improvements in β-cell function (measured 
by homeostatic model assessment; HOMA-β) 
were observed in all saxagliptin-treatment 
arms.54,55

Phase 3 Trials

There have been several phase 3 trials assess-
ing saxagliptin-based therapy in groups of 
patients with T2DM (Figure 5). The efficacy and 
safety of saxagliptin in drug-naïve patients with 
T2DM was investigated in two patient cohorts 
in a multicenter, randomized, double-blind, pla-
cebo-controlled trial: a main treatment cohort 
(HbA1c, 7%-10%; n=401) treated once daily with 
saxagliptin (2.5, 5, or 10 mg), and an open-label 
cohort (HbA1c, >10% and ≤12%; n=66) treated 
once daily with saxagliptin 10 mg, for 24 
weeks.56 At week 24, saxagliptin at all doses pro-
vided significant (P<0.0001) reductions in HbA1c 
from baseline (–0.62% to –0.73%) compared 
with the placebo, with reductions observed rela-
tive to the placebo as early as week 4. Significant 
(P<0.0075) reductions in FPG compared with 
the placebo were observed in all saxagliptin 
treatment arms (15-23 mg/dL), with reductions 
observed as early as week 2. Saxagliptin reduced 
PPG area under the curve (AUC; placebo- 

Figure 4. Adjusted-mean HbA1c changes from baseline at
week 12 in the saxagliptin monotherapy low-dose cohort.55

SEM=standard error of the mean.
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subtracted differences, –6221 to –7437 mg·min/
dL), and patients achieving target HbA1c levels 
(<7%) was higher with saxagliptin (35%-41%) 
than with the placebo (24%).56

The efficacy and safety of saxagliptin as 
add-on therapy was investigated in three trials 
in patients with T2DM inadequately controlled 
by treatment with metformin, a TZD, or an SU 
alone.57-59 The efficacy of saxagliptin as add-
on therapy was investigated in 743 patients 
with T2DM inadequately controlled (HbA1c, 
7%-10%) with metformin (1500-2550 mg/day) 
alone. At week 24, once-daily saxagliptin 
(2.5-10 mg) add-on treatment to stable met-
formin provided signif icant (P<0.0001) 
reductions in HbA1c (0.71%-0.83%) over the 
placebo. Saxagliptin treatment significantly 
(P<0.0001) reduced FPG (adjusted-mean dif-
ferences of 16-24 mg/dL) and PPG compared 
with the placebo, following a standard oral 
glucose tolerance test (OGTT).57 In the TZD 
study, 565 patients with inadequate glycemic 
control (HbA1c, 7%-10.5%) were randomized 
to receive add-on therapy with saxagliptin 
(2.5 or 5 mg) or a placebo once daily, in addi-
tion to either pioglitazone (30 or 45 mg) or 
rosiglitazone (4 mg or 8 mg) for 24 weeks.59 At 
week 24, saxagliptin (2.5 and 5 mg) add-on 
treatment provided significant adjusted-mean 
reductions in HbA1c from baseline (–0.66% 
and –0.94%, respectively) compared with the 
placebo (–0.30%; both P<0.001). Significant 
reductions were also observed with saxagliptin 
(2.5 and 5 mg) for FPG (–14.3 and –17.3 mg/dL, 
respectively) compared with the placebo 
(2.8 mg/dL; both P<0.01), and for PPG AUC 
(–7849 and –9269 mg·min/dL, respectively) 
compared with the placebo (–2690 mg·min/dL; 
both P<0.0001). Finally, a significantly 
(P<0.01) greater proportion of patients reached 
target HbA1c levels (<7%) in the saxagliptin 
groups (both 42%) compared with the placebo 

group (26%).59 In the SU study, 768 patients 
with T2DM inadequately controlled (HbA1c, 
7.5%-10%) with glyburide 7.5 mg alone, were 
randomized to receive saxagliptin 2.5 or 5 mg, 
or glyburide 2.5 mg in addition to open-label 
glyburide for 24 weeks.58 Blinded uptitration 
of glyburide to a maximum of 15 mg daily 
was permitted in the glyburide treatment 
arm only.58 At week 24, saxagliptin 2.5 and 
5 mg add-on treatment provided significant 
(P<0.0001) adjusted mean reductions in HbA1c 
(–0.54% and –0.64%, respectively) com-
pared with an increase for uptitrated glybu-
ride (0.08%). Significant reductions were also 
observed with saxagliptin 2.5 and 5 mg add-
on treatment for FPG (–7.1 and –9.7 mg/dL, 
respectively) compared with the placebo 
(0.7 mg/dL; both P<0.05), and for PPG at 
120 minutes during OGTT (–30.9 and 
–34.2 mg/dL, respectively) compared with the 
placebo (7.6 mg/dL; both P<0.0001).58

Initial combination therapy with saxaglip-
tin plus metformin was investigated in drug-
naïve patients with inadequately controlled 
T2DM (HbA1c, 8%-12%; n=1306). Patients were 
treated with saxagliptin (5 or 10 mg) plus met-
formin 500 mg, or the placebo, in addition to 
either saxagliptin 10 mg alone or metformin 
500 mg alone, for 24 weeks.60 Saxagliptin 
(5 and 10 mg) initial combination therapy 
with metformin (500 mg) provided signifi-
cant (P<0.001) reductions in HbA1c (–2.53% 
and –2.49%, respectively), FPG (–59.8 and 
–62.2 mg/dL, respectively), PPG at 120 minutes 
during an OGTT (–137.9 and –137.3 mg/dL, 
respectively), and improved β-cell function 
(HOMA-2β; 33% and 38%, respectively), com-
pared with saxagliptin 10 mg alone (HbA1c, 
–1.69%; FPG, –30.9 mg/dL; PPG, –106.3 mg/dL; 
HOMA-2β,18.2%) or metformin 500 mg alone 
(HbA1c, –1.99%; FPG, –47.3 mg/dL; PPG, 
–96.8 mg/dL; HOMA-2β, 22.6%).60
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Tolerability and Side Effects

Saxagliptin as monotherapy and in combi-
nation with other antidiabetic drugs has dem-
onstrated a good safety and tolerability profile 
in multiple randomized trials in patients with 
T2DM. In drug-naïve patients with T2DM, 
saxagliptin 2.5-100 mg monotherapy once 
daily showed a similar tolerability profile 
to the placebo, with a very low incidence of 
confirmed hypoglycemia (≤50 mg/dL) in the 
saxagliptin treatment arms.55,56 The most com-
monly reported adverse events with saxaglip-
tin monotherapy include headache, upper 
respiratory tract infections, and urinary tract 
infections.54-56 

When given as add-on treatment in 
patients with inadequate glycemic control, 
despite monotherapy with metformin, a TZD, 
or an SU, saxagliptin 2.5-10 mg was well toler-
ated, showed similar rates of adverse events to 
the placebo, and did not increase the risk of 
hypoglycemia.57-59 Initial combination therapy 
with saxagliptin (5 and 10 mg) and metformin 
(in drug-naïve patients) was also well toler-
ated, with few occurrences of hypoglycemic 
events (saxagliptin 5 mg + metformin: 3.4%; 
saxagliptin 10 mg + metformin: 5%; saxaglip-
tin 10 mg alone: 1.5%; and metformin alone: 
4%).60 When added to glyburide, the most 
common adverse events with occurrence rates 
≥5% included (all comparisons are saxaglip-
tin + glyburide vs. glyburide): urinary tract 
infection (8% vs. 8.2%), headache (7.6% vs. 
5.6%), nasopharyngitis (5.8% vs. 6.7%), upper 
respiratory tract infection (5.4% vs. 6.7%), 
back pain (5.4% vs. 4.5%), hypertension (5% 
vs. 2.2%), diarrhea (4.8% vs. 5.2%), influ-
enza (4.6% vs. 6%), and pain in the extremi-
ties (4% vs. 5.6%).58 Reported hypoglycemia 
did not differ between groups (saxagliptin + 
glyburide 13.3%-14.6%, vs. glyburide 10.1%, 

P=nonsignificant).58 The addition of saxaglip-
tin to pioglitazone or rosiglitazone resulted 
in similar rates of adverse events to the pla-
cebo.59 Similarly, all reported hypoglycemic 
events were similar to the placebo (saxaglip-
tin 2.5 mg, 4.1%; saxagliptin 5  mg, 2.7%; 
placebo, 3.8%).59 Saxagliptin treatment was 
weight neutral relative to the placebo when 
added to metformin (change from baseline 
to week 24 of –1.5, –0.9, –0.5, and –1 kg for 
saxagliptin 2.5, 5, 10 mg, and the placebo, 
respectively).57

Drug Interactions 

A series of studies in healthy individuals 
investigated whether any pharmacokinetic 
interactions occurred between saxagliptin 
and a range of commonly-prescribed thera-
peutic agents.61-65 Saxagliptin is metabolized 
to its active metabolite by cytochrome P450 
CYP3A4/5, but does not inhibit or induce 
CYP3A4.62 Simvastatin is a 3-hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) 
reductase inhibitor prescribed to control 
hypercholesterolemia and prevent cardiovas-
cular disease, which shares the CYP3A4 met-
abolic pathway with saxagliptin.62 Therefore, 
the effect of the coadministration of saxaglip-
tin 10 mg and simvastatin 40 mg once daily 
on the multiple-dose pharmacokinetics of 
each individual drug was investigated in 
24 healthy individuals.62 Coadministration 
of simvastatin increased saxagliptin Cmax (by 
21%), and AUCtau (by 12%; AUCtau: measure-
ment of total exposure by area under the 
curve over the dosing interval at steady state). 
Saxagliptin administration did not meaning-
fully alter the pharmacokinetics of simvasta-
tin. The authors concluded that the increase 
in Cmax had no clinical significance, and that 
no dosage adjustment is necessary for either 
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drug when saxagliptin and simvastatin are 
coadministered.62 

Ketoconazole is a broad-spectrum anti
fungal agent and a potent inhibitor of 
CYP3A4/5, which might be expected to alter 
the pharmacokinetics of saxagliptin.65 The 
effect of coadministering saxagliptin 100 mg 
and ketoconazole 200 mg once daily on the 
single-dose pharmacokinetics of saxagliptin 
and the multiple-dose pharmacokinetics of 
ketoconazole were investigated in 16 healthy 
individuals.65 Coadministration of ketoco-
nazole increased saxagliptin Cmax and AUC∞ 
values by 62% and 145%, respectively, and 
decreased metabolite Cmax and AUC∞ values 
by 95% and 88%, respectively. Saxagliptin did 
not meaningfully affect ketoconazole steady-
state pharmacokinetics.65 Therefore, dosage 
adjustment of saxagliptin may be required 
when coadministered with ketoconazole.

Diltiazem is a calcium-channel blocker 
used in the treatment of hypertension; it is 
a moderate inhibitor of CYP3A4/5 and would 
be expected to alter the pharmacokinetics 
of saxagliptin.61 The effect of the coadmin-
istration of saxagliptin 10 mg and diltiazem 
360 mg on the single-dose pharmacokinetics 
of saxagliptin and multiple-dose pharmaco
kinetics of diltiazem was investigated in 
14 healthy individuals.61 Coadministration of 
diltiazem increased saxagliptin Cmax by 63% 
and AUC∞ by 109%, and decreased its metabo-
lite Cmax by 43% and AUC∞ by 34%. Saxagliptin 
did not meaningfully affect diltiazem multiple-
dose pharmacokinetics.61 Therefore, dosage 
adjustment of saxagliptin may be required 
when coadministered with diltiazem.

Maalox Max® (MM; Novartis, East Hanover, 
NJ, USA; comprised of aluminum hydrox-
ide + magnesium hydroxide + simethicone), 
famotidine (FAM), and omeprazole (OMZ) are 
agents that alter gastric pH and could poten-

tially be coadministered with saxagliptin in 
patients with T2DM. In an open-label, ran
domized, three-way crossover study, on sep-
arate occasions single doses of saxagliptin 
10 mg were coadministered with an oral dose 
of MM 30 mL, FAM 40 mg (dosed 3 hours ear-
lier), or OMZ 40 mg (dosed to steady-state) in 
14 healthy individuals.63 Coadministration of 
MM or FAM altered saxagliptin Cmax (point 
estimates [95% CI] of 0.74 [0.65, 0.84] and 1.14 
[1, 1.30], respectively) but changes were not 
considered to be clinically relevant. OMZ 
showed no effect on saxagliptin pharmacoki-
netics. The pharmacokinetics of saxagliptin’s 
metabolite generally paralleled those of the par-
ent. The authors concluded that no separation 
of dosing or dosage adjustment is needed when 
saxagliptin is used with these medications.63 

Digoxin is a cardiac glycoside widely used 
in the treatment of various cardiac conditions 
and is a P-glycoprotein substrate. The effect of 
coadministering saxagliptin 10 mg and dig-
oxin 0.25 mg on the steady-state pharmaco
kinetics of each drug was investigated in 
14 healthy individuals.64 Coadministration 
of digoxin did not alter the steady-state 
pharmacokinetics of saxagliptin, and coad-
ministration of saxagliptin did not alter the 
steady-state pharmacokinetics of digoxin. 
Boulton et al.64 concluded that no dosage 
adjustment would be required when these two 
drugs are coadministered. 

Therapeutic Applications

All available data suggest that saxagliptin 
can be used as monotherapy or in combina-
tion with other antidiabetic agents. Once-daily 
administration might also increase patient com-
pliance. The lack of an increased risk of hypogly-
cemia and the possible neutral effect on weight 
makes saxagliptin an attractive therapy option. 
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However, as with other DPP-4 inhibitors, the 
lack of long-term safety data, and data in regard 
to cardiovascular outcomes, make it more likely 
that saxagliptin will be used as add-on rather 
than monotherapy when it becomes available. 

CONCLUSION

Saxagliptin is a novel and highly selective 
DPP-4 inhibitor that has recently completed 
phase 3 clinical trials. It is an oral antidiabetic 
agent that is administered once daily, and pro-
duces significant reductions in HbA1c, FPG, and 
PPG levels, when used as monotherapy or in 
combination with metformin, SUs, or TZDs. 
Treatment with saxagliptin is well tolerated 
and does not result in a significant increase in 
hypoglycemia. The impact of saxagliptin on 
weight has not been widely assessed, but the 
limited data available suggest that it might be 
weight neutral.
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