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Sertaconazole nitrate is an antifungal agent that exhibits anti-inflammatory activity; however, the mechanism for
this action was unknown. We investigated the cellular mechanisms by which sertaconazole exerts its anti-
inflammatory activity in keratinocytes and human peripheral blood mononuclear cells (PBMCs). Paradoxically,
sertaconazole was found to activate the proinflammatory p38 mitogen-activated protein kinase. Treatment with
sertaconazole also resulted in the induction of cyclooxygenase-2 (COX-2) and the subsequent release of
prostaglandin E2 (PGE2). Knocking down p38 in keratinocytes using small interfering RNA resulted in an
inhibition of sertaconazole-induced PGE2 release confirming that activation of p38 was required for PGE2

production. Additionally, in stimulated keratinocytes and human PBMCs, sertaconazole was found to suppress
the release of cytokines. Treatment with anti-PGE2 antiserum or the COX-2 inhibitor NS398 reversed the
inhibitory effects of sertaconazole on the release of proinflammatory cytokines, linking endogenous PGE2 with
the anti-inflammatory effects. Finally, in an in vivo mouse model of tetradecanoyl phorbol acetate (TPA)-induced
dermatitis, the sertaconazole-mediated inhibition of TPA-induced ear edema was reversed by NS398.
Biochemical analysis of tissue biopsies revealed increase in PGE2 levels in sertaconazole-treated mice. Thus,
activation of the p38–COX-2–PGE2 pathway by agents such as sertaconazole provides anti-inflammatory
therapeutic benefits.
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INTRODUCTION
The p38 mitogen-activated protein (MAP) kinase plays a
central role in numerous proinflammatory responses mainly
via the post-transcriptional control of inflammatory gene
expression (Saklatvala, 2004; Schieven, 2005). There are four
isoforms of p38 kinase: a, b, d, and g (Saklatvala, 2004) and
cells can express multiple isoforms. Keratinocytes, for
example, are reported to express p38 a, -b, and -d isoforms
(Efimova et al., 2003). Once activated by dual phosphoryla-
tion on Thr180 and Tyr182 by upstream MAP kinase kinases
(Pearson et al., 2001), p38 positively regulates expression of
many genes involved in inflammation, one of which is
cyclooxygenase-2 (COX-2). COX-2 mRNA has an AU-rich
element in the proximal 30-untranslated region that makes the

COX-2 message unstable, and this effect is counteracted by
MAPKAPK-2, a downstream substrate of p38 MAP kinase
(Lasa et al., 2000; Sully et al., 2004). COX-2 regulates the
conversion of arachidonic acid into intermediate cyclic
endoperoxides that on further enzymatic action generates
prostaglandins (Robertson, 1998).

Prostaglandins are an important group of inflammatory
mediators that are synthesized and released during tissue
trauma and inflammation (Vane, 1971; Treede et al., 1992).
Although these eicosanoids are rapidly catabolized (Camp-
bell and Halushka, 1996), during chronic injury, physiologi-
cal levels of prostanoids in tissues can be maintained for
extended periods of time (Vane et al., 1994; Beiche et al.,
1996; Hay et al., 1997). Prostaglandin E2 (PGE2) is generated
in substantial amounts in local sites of inflammation and
plays distinct roles in inflammation that are tissue- and cell-
type-specific (Serhan and Levy, 2003). Although PGE2

induces effects that mediate several of the cardinal features
of inflammation such as edema (Moncada et al., 1973), it has
been reported to resolve inflammation in a mouse model of
mast cell-dependent allergic inflammation by suppressing
mediator release (Raud et al., 1988). Thus, PGE2 may
produce both pro- and anti-inflammatory effects.

We previously reported that of a panel of eight antifungal
agents, sertaconazole nitrate was the most potent antifungal
studied in reducing the release of cytokines from activated
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peripheral blood mononuclear cells (PBMCs) and was
effective against contact hypersensitivity and irritant contact
dermatitis, whereas none of the other antifungal compounds
evaluated significantly reduced inflammation in all dermal
irritation models (Agut et al., 1996; Liebel et al., 2006). In this
study, we sought to determine the mechanism by which the
antifungal agent, sertaconazole nitrate, exerts its anti-inflam-
matory activity. In an unexpected finding, we demonstrate that
sertaconazole activates the p38 MAP kinase pathway resulting
in the induction of COX-2 and the subsequent release of PGE2

in keratinocytes and PBMCs. Using pharmacological inhibitors
and small interfering RNA (siRNA) to p38, the sertaconazole-
induced release of PGE2 is abolished. Furthermore, using an
anti-PGE2 antiserum or the COX-2 inhibitor, NS398, the release
of PGE2 was found to be the primary factor in the anti-
inflammatory activity of sertaconazole-inhibiting cytokine
release from stimulated keratinocytes and PBMCs. Finally, in
a tetradecanoyl phorbol acetate (TPA)-induced ear edema
model, we confirmed that topical application of sertaconazole
enhanced PGE2 release and inhibition of PGE2 formation was
found to reverse the anti-inflammatory effect of sertaconazole.
These results elucidate a paradoxical anti-inflammatory path-
way whereby sertaconazole exerts its anti-inflammatory effects
via the p38–COX-2–PGE2 pathway.

RESULTS
Activation of p38 MAP kinase by sertaconazole nitrate

We previously reported that sertaconazole exhibited anti-
inflammatory activity in vitro by inhibiting the release of
proinflammatory cytokines from human PBMCs and also
exhibited efficacious anti-inflammatory activity in vivo

against a broad spectrum of dermal inflammation models
(Liebel et al., 2006). Because most of these inflammatory
responses are mediated by different proinflammatory cyto-
kines and the p38 MAP kinase plays a central role in the post-
transcriptional control of numerous proinflammatory cytokine
gene expression (Schieven, 2005), we sought to determine
whether sertaconazole inhibited activation of p38 MAP
kinase. Initial experiments indicated that sertaconazole did
not inhibit p38 but paradoxically induced p38 MAP kinase
activation. Co-treatment with sertaconazole and either tumor
necrosis factor-a (TNF-a) or phorbol 12-myristate 13-acetate
in primary human keratinocytes resulted in a greater
activation of p38 MAP kinase than stimulation with TNF-a
or phorbol 12-myristate 13-acetate alone (data not shown).
Sertaconazole was also found to induce activation of p38
MAP kinase in the absence of co-stimulation. In both the
primary keratinocytes (Figure 1a) and HaCaT keratinocytes
(Figure 1b), sertaconazole treatment resulted in the activation
of p38 MAP kinase and its downstream substrate, the small
heat-shock protein 27 (Hsp27), in a dose- and time-dependent
manner. HaCaT cells were treated with phorbol 12-myristate
13-acetate for different time intervals as a positive control.
These results were verified by western blotting of whole-cell
extracts. Consistent with the ELISA results, it was observed
that in both normal keratinocytes (data not shown) and
HaCaT cells, 1 mg/ml sertaconazole activated p38 MAP kinase
and Hsp27 in a time-dependent manner (Figure 1c). The
phospho-blots were reblotted with p38 and Hsp27 total
protein antibodies to account for equal protein loading.

One of the mechanisms by which p38 MAP kinase is
activated is by stimulation of NAD(P)H oxidase and genera-
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Figure 1. Sertaconazole nitrate activates p38 MAP kinase and Hsp27 in keratinocytes. (a) Normal human epidermal keratinocytes (HEK) were serum-starved

for 24 hours followed by treatment with the indicated concentrations of sertaconazole nitrate for 5, 10, 20, 40, and 60 minutes and (b) HaCaT keratinocytes were

serum-starved for 24 hours and treated with the indicated concentrations of sertaconazole nitrate or phorbol 12-myristate 13-acetate as control for 1, 5, 10, 20,

30, and 60 minutes. Phospho-p38 and phospho-Hsp27 levels were measured in the lysates by ELISA. Data are representative of one of three separate

experiments. (c) HaCaT keratinocytes were serum-starved and treated with 1 mg/ml sertaconazole (STZ) or vehicle for the indicated times. Whole-cell extracts

(20mg of protein) were subjected to western blotting and probed with phospho-p38 and phospho-Hsp27 antibodies. The blots were reblotted with p38 and

Hsp27 antibodies to verify equal protein loading. Data are representative of one of three separate experiments. (d) HaCaT keratinocytes were either left untreated

or treated with 0.01% catalase, 50 mM ascorbic acid, 50 mM trolox, 10 mM N-acetyl-cysteine, or 5 mM diphenylene iodonium for 30 minutes followed by 10 mg/ml

sertaconazole treatment for an additional 30 minutes. Unstimulated lane did not get any sertaconazole treatment. Phospho-p38 levels were measured in the

lysates by ELISA. Data are representative of one of three separate experiments. *Po0.05 compared with keratinocytes treated with sertaconazole alone.

www.jidonline.org 337

R Sur et al.
Sertaconazole Activates p38–COX-2–PGE2



tion of reactive oxygen species such as superoxide anion
(O2

K�) and hydrogen peroxide (H2O2) (Griendling and Ushio-
Fukai, 2000; Blanc et al., 2003; Mitra and Abraham, 2006).
To assess how sertaconazole activated p38 MAP kinase,
HaCaT keratinocytes were treated with pharmacological
inhibitors for 30 minutes followed by treatment with sertaco-
nazole. As observed in Figure 1d, only inhibitors of super-
oxide signaling affected the activation of p38. Diphenylene
iodonium treatment that inhibits NAD(P)H oxidase prevented
the sertaconazole-mediated p38 activation and a similar
effect was also observed in the presence of superoxide
dismutase (data not shown), which converts O2

� � into the
more stable H2O2 (Griendling and Ushio-Fukai, 2000). These
results suggest that the mechanism of action for sertacona-
zole-stimulated p38 MAP kinase activation involves super-
oxide radical formation.

Sertaconazole induces PGE2 production via COX-2 in
keratinocytes

On activation, p38 MAP kinase induces the expression of its
downstream substrate COX-2, which further catalyzes the
production of prostanoids such as PGE2, which have been
shown to play diverse roles in inflammation (Schieven,
2005). Because sertaconazole resulted in the activation of
p38 MAP kinase, we asked whether sertaconazole induced
COX-2 expression and affected PGE2 production. To this end
HaCaT keratinocytes were treated with the indicated
concentrations of sertaconazole for 6 hours and western blot
analysis of whole-cell extracts showed that sertaconazole
treatment resulted in a 50% induction of expression of COX-2
protein at 2mg/ml concentration (Figure 2a). The same blot
was blotted with ERK-2 antibody to show equal protein
loading. Next, we evaluated the effect of different concentra-
tions of sertaconazole on PGE2 production from HaCaT
keratinocytes. Figure 2b shows that sertaconazole treatment
results in a twofold increase in PGE2 release. To assess the
involvement of COX-2 in sertaconazole-mediated PGE2

release, cells were preincubated with NS398, a specific
inhibitor of COX-2 (Gierse et al., 1995) before sertaconazole
treatment. Sertaconazole-mediated PGE2 production was
inhibited in the presence of the COX-2 inhibitor (Figure
2b), suggesting the involvement of COX-2 in PGE2 produc-
tion. Next, we evaluated whether sertaconazole regulated the
TNF-a-dependent PGE2 production in these cells and
interestingly it was observed that in a similar manner
sertaconazole upregulated TNF-a-induced PGE2 release
(Figure 2c). This PGE2 release was inhibited in the presence
of the COX-2 inhibitor NS398 suggesting the involvement of
COX-2 in TNF-a and sertaconazole-mediated PGE2 produc-
tion (Figure 2c).

Sertaconazole-mediated induction of PGE2 is dependent on p38
activation

To confirm further the involvement of p38 MAP kinase in
sertaconazole-mediated induction of PGE2 production, we
examined the sertaconazole-mediated PGE2 release in the
absence of p38 MAP kinase. To this end, we knocked down
p38 MAP kinase in HaCaT keratinocytes by transfecting with

p38-specific siRNA for 72 hours. The levels of total p38 were
determined by western blotting of whole-cell extracts. In p38
siRNA-transfected cells, p38 expression was downregulated
by about 80% compared with control siRNA-transfected cells
(Figure 3a). The same blot was reblotted with ERK-2 and
Hsp27 antibodies to show equal protein loading. Next, we
assessed sertaconazole-mediated PGE2 release in control
siRNA and p38 siRNA-transfected cells. In control siRNA-
transfected cells, there was an induction of PGE2 release at

COX-2

ERK-2
0

0

– – – –
–

– – –+ + + + + +
+ + ++ + +

1

0.50

0.25

0.00P
G

E
2 

re
le

as
e

(n
g/

m
l)

P
G

E
2 

re
le

as
e

(n
g/

m
l)

0

0

2

2

1

2 0 1 2

2

***

STZ (�g/ml)

STZ (�g/ml)

STZ 0 1 20 0 12STZ

NS398 NS398
TNF-�

100,000

75,000

C
O

X
-2

 in
te

ns
ity

50,000

25,000

0

Figure 2. Sertaconazole induces COX-2 protein expression and PGE2

production in keratinocytes. (a) HaCaT keratinocytes were treated with the

indicated concentrations of sertaconazole (STZ) for 6 hours. Whole-cell

extracts (20 mg of protein) were western-blotted and probed with COX-2

antibody and ERK-2 antibody to verify equal protein loading. The bar chart

represents densitometric analysis of band intensities of COX-2 protein. Data

represent one of three separate experiments. (b) HaCaT keratinocytes were

treated with the indicated concentrations of sertaconazole in the presence or

absence of 10mM COX-2 inhibitor NS398 for 8 hours. PGE2 levels in the

supernatants were quantified using ELISA. Results represent mean7SD from

at least three different experiments. **Po0.01 compared with untreated

control keratinocytes. (c) HaCaT keratinocytes were stimulated with

100 ng/ml TNF-a and treated with vehicle or the indicated concentrations of

sertaconazole in the presence or absence of 10 mM COX-2 inhibitor NS398 for

24 hours. PGE2 levels were quantified using ELISA. Results represent

mean7SD from at least three different experiments. *Po0.05 compared with

keratinocytes treated with TNF-a plus vehicle.
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activation. (a) HaCaT keratinocytes were transfected with control siRNA

(100 nM) or p38 MAPK siRNA (20 nM) for 72 hours. Whole-cell extracts (20 mg

protein) were subjected to western blotting and probed with p38 antibody to
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(b) HaCaT keratinocytes were transfected with control siRNA or p38 MAPK

siRNA for 48 hours after which the cells were treated with the indicated
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assessed for PGE2 levels by ELISA. Results represent mean7SD from at least

three different experiments.

338 Journal of Investigative Dermatology (2008), Volume 128

R Sur et al.
Sertaconazole Activates p38–COX-2–PGE2



1 mg/ml sertaconazole as expected and in p38 siRNA-
transfected cells, these levels were brought down to baseline
levels indicating that p38 MAP kinase is involved in the
regulation of PGE2 production mediated by sertaconazole
(Figure 3b). We also confirmed this using the p38 inhibitor
SB203580 that showed sertaconazole-mediated PGE2 release
was inhibited in the presence of the inhibitor (data not
shown).

Involvement of PGE2 in the suppression of cytokine production
by sertaconazole in keratinocytes and PBMCs

To assess whether sertaconazole-mediated PGE2 release
played an anti-inflammatory role, we looked at the effect of
sertaconazole on Propionibacterium acnes-induced interleu-
kin-8 (IL-8) production in keratinocytes. P. acnes is an
important factor in the development of inflammatory acne
lesions and bacteria-induced IL-8 production has been
thought to play an important role in the pathophysiology of
acne (Chen et al., 2002). Typically, keratinocytes were left
unstimulated or stimulated with P. acnes in the presence or
absence of sertaconazole. The result showed that 1 mg/ml
sertaconazole treatment inhibited P. acnes-induced IL-8
production in keratinocytes (Figure 4a). Preincubation with
the p38 inhibitor SB203580 or the COX-2 inhibitor NS398
before P. acnes or sertaconazole treatment reversed the
inhibitory effects of sertaconazole on IL-8 production
suggesting the involvement of p38, COX-2, and possibly
PGE2 in mediating this effect (Figure 4a). To confirm the
involvement of PGE2, cells were treated with sertaconazole
in the presence of anti-PGE2 antiserum for 24 hours. Anti-
PGE2 antiserum reversed the inhibitory effects of sertacona-
zole on IL-8 production in keratinocytes suggesting the
involvement of sertaconazole-induced endogenous PGE2 in
mediating this effect (Figure 4a).

Our previous work showed that sertaconazole dose
dependently inhibited cytokine release from phytohemaglut-
tinin (PHA)-stimulated human PBMCs (Liebel et al., 2006).
We therefore assessed whether sertaconazole induced PGE2

release in these immune cells and whether PGE2 mediates the
inhibition of cytokine release from these cells. Human
PBMCs were stimulated with PHA in the presence or absence
of sertaconazole. As seen from Figure 4b, PHA induced PGE2

release from PBMCs and sertaconazole potentiated the PHA-
induced PGE2 release by about twofold. Preincubation with
the COX-2 inhibitor NS398 before PHA or sertaconazole
treatment inhibited PGE2 release suggesting the involvement
of COX-2 in sertaconazole-mediated PGE2 release. Addition
of exogenous PGE2 dose dependently inhibited the release of
proinflammatory cytokines from these cells (Figure 4c),
supporting the hypothesis that sertaconazole results in the
inhibition of cytokine release from PBMCs via induction
of PGE2. To confirm this hypothesis, cells were treated with
PHA and sertaconazole in the presence of non-immune
serum or anti-PGE2 antiserum or COX-2 inhibitor NS398.
Anti-PGE2 antiserum and NS398 reversed the suppressive
effects of sertaconazole on cytokine production con-
firming the involvement of endogenous PGE2 in this effect
(Figure 4d).

Sertaconazole-mediated PGE2 release is involved in the
suppression of TPA-induced ear edema in mice

TPA is the main active compound found in croton oil,
producing vasodilation, erythema, and edema within 5 hours
after contact with the skin (Rao et al., 1993). In a mouse
model of TPA-induced ear edema, sertaconazole nitrate
significantly reduced the TPA-induced edema response. The
mean ear weight of TPA-challenged animals treated with
sertaconazole nitrate (1%) was 6.2970.43 mg compared
with 15.8870.64 for controls, indicating a statistically
significant reduction (60.4%) in irritant dermatitis
(Po0.0001; Figure 5a). Treating the ears with both sertaco-
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Figure 4. PGE2 is involved in sertaconazole-mediated suppression of

cytokine production in keratinocytes and PBMCs. (a) Normal human

epidermal keratinocytes were stimulated with P. acnes in the absence or

presence of 1 mg/ml sertaconazole nitrate alone or combined with 10 mM

SB203580 or 10 mM NS398 or anti-PGE2 antiserum. After 24 hours, release of

IL-8 was analyzed. Results represent mean7SD from at least three different

experiments. **Po0.01 or ***Po0.001 compared with keratinocytes treated

with 1 mg/ml sertaconazole nitrate. (b) Lymphocyte-enriched human PBMCs

were stimulated with 10 mg ml�1 purified PHA in the presence or absence of

1mg/ml sertaconazole nitrate or 10mM NS398. After 24 hours, release of PGE2

from activated PBMCs was assayed using ELISA. The results shown are
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donors. *Po0.05 compared with PBMCs treated with PHA plus vehicle. (c)

PBMCs were stimulated with PHA in the absence or presence of exogenously
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nazole and the COX-2 inhibitor NS398 abrogated the anti-
inflammatory effects of sertaconazole (Figure 5a). Quantita-
tion of PGE2 levels in mouse ear biopsies showed that in
sertaconazole-treated ears, there was an induction of PGE2

production (68.8715 ng/mg protein) as compared with TPA
controls (40.7712 ng/mg protein) and this induction of PGE2

was suppressed by the COX-2 inhibitor NS398 (Figure 5b).
Taken together, these results suggest that sertaconazole
reduced inflammation via inducing PGE2 production and
the COX-2 inhibitor blocks sertaconazole from exerting its
anti-inflammatory effects.

DISCUSSION
Our results indicate that the antifungal agent sertaconazole
nitrate activates the p38 MAP kinase pathway as a mechan-
ism of action for the anti-inflammatory activity. This is a
paradoxical finding because the main biological response of
p38 activation involves the production of proinflammatory
mediators such as TNF-a, IL-1b, IL-6, COX-2, and other
proteins that promote the inflammatory process (Saklatvala,
2004; Kaminska, 2005). The anti-inflammatory activity of
sertaconazole is also dependent on the secondary production
of PGE2, which is also a paradoxical finding because
prostanoids primarily induce proinflammatory responses such
as vasodilation and plasma extravasation (Moncada et al.,
1973). Thus, it appears that sertaconazole elicits an anti-
inflammatory response through a non-classical anti-inflam-
matory pathway.

The p38 MAP kinase is activated in response to various
extracellular stimuli such as UV light, heat, osmotic shock,
inflammatory cytokines, and growth factors (Zarubin and
Han, 2005). Many of these stimuli signal to p38 MAP kinase
by the stimulation of NAD(P)H oxidase and generation of
reactive oxygen species such as superoxide anion (O2

K�) and
hydrogen peroxide (H2O2) (Griendling and Ushio-Fukai,
2000; Blanc et al., 2003; Mitra and Abraham, 2006). In our

studies, we found that the sertaconazole-induced activation
of p38 MAP kinase was inhibited in the presence of
diphenylene iodonium an inhibitor of NAD(P)H oxidase
(Griendling et al., 1994) and by superoxide dismutase (Figure
1d), which converts O2

� � into the more stable H2O2

(Griendling and Ushio-Fukai, 2000). Incorporation of anti-
oxidants (trolox, ascorbic acid, and N-acetyl cysteine (NAC))
had no effect on the phosphorylation of p38 by sertacona-
zole. Sertaconazole did not increase H2O2 formation in
human keratinocytes (data not shown) and treatment with
catalase was ineffective in reducing the phosphorylation of
p38 by sertaconazole, suggesting that the peroxide formation
was not a factor in p38 activation. In contrast to sertacona-
zole, another antifungal agent, miconazole nitrate, was
shown to induce H2O2 formation (Kobayashi et al., 2002);
however, miconazole does not inhibit cytokine release or
elicit anti-inflammatory activity comparable with sertacona-
zole (Agut et al., 1996; Liebel et al., 2006) and therefore does
not probably activate the same signal transduction cascade.
Thus, from these results, we believe that sertaconazole
stimulates superoxide radical formation to induce p38 MAP
kinase.

The results from this study indicate that sertaconazole
activates p38 MAP kinase to induce anti-inflammatory
activity. There are four isoforms of p38 kinase: a, b, d, and
g (Saklatvala, 2004) Keratinocytes express only the p38a, -b,
and -d isoforms. The siRNA used in these studies to inhibit
p38 MAP kinase signaling are non-selective for the P38
isoforms and will result in downregulation of all isotypes,
therefore the current results do not address which isoform(s)
is activated by sertaconazole. Multiple p38 MAP kinase
isoforms provides the potential for each of these isoforms to
differ in their substrate specificity and respond in a cell-type-
specific manner (Enslen et al., 1998; Eckert et al., 2003).
Whereas all four P38 isoforms can be activated by
stress stimuli, such as proinflammatory cytokines TNF-a and
IL-1 (Goedert et al., 1997; Kumar et al., 1997; Hu et al.,
1999), the p38d isoform is solely activated in response to
stimuli such as epigallocatechin-3-gallate (Efimova et al.,
2002) and plays a key role in the regulation of keratinocyte
differentiation and apoptosis (Eckert et al., 2003). Addition-
ally, p38a and p38g were found to have opposing effects on
the activation of activator protein-1 (AP-1)-driven reporter
genes in mammalian cells (Askari et al., 2007). Recent studies
have demonstrated that resveratrol, a stilbene isolated from
the skin and seeds of grapes, both induces the activation of
p38 MAP kinase-b and inhibits p38 MAP kinase-a in
cardiomyocytes to induce a cardioprotective effect during
ischema (Das et al., 2006). Thus, simultaneous activation or
inhibition of multiple p38 isoforms may also add to the signal
transduction complexity in the p38 MAP kinase pathway.
Future studies will investigate the isoforms of p38 MAP
kinase, which mediate the anti-inflammatory activity of
sertaconazole.

Several lines of evidence suggest that production of PGE2

is the downstream mediator for the anti-inflammatory activity
induced by sertaconazole. First treating human keratinocytes
or PBMCs in culture with sertaconazole resulted in a dose-
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Figure 5. Reduction of TPA-induced murine dermatitis by topical

application of sertaconazole nitrate. (a) CD-1 mice were treated with TPA

applied to the left ear; the right remained untreated. Immediately after

application of TPA (1 mg/ear), sertaconazole (1%), and/or NS398 (0.1%) were

applied to the TPA-treated ear (n¼ 7 per group). The results shown are

mean7SD; ***Po0.0001 indicates a significant reduction in inflammation

compared with the TPA plus vehicle-treated group determined using two-

tailed Student’s t-test. (b) Biopsies of mouse ears that had been challenged

with TPA only or treated with sertaconazole or NS398 after TPA challenge

were homogenized and supernatants were assessed for PGE2 levels using

ELISA. Total protein content of the biopsy samples was determined and PGE2

levels represented as ng/mg protein. The results shown are mean7SD;

**Po0.01 indicates a significant increase in PGE2 levels compared with the

TPA plus vehicle-treated group determined using two-tailed Student’s t-test.

340 Journal of Investigative Dermatology (2008), Volume 128

R Sur et al.
Sertaconazole Activates p38–COX-2–PGE2



dependent stimulation of PGE2 production (Figures 2b and
4a). In addition, topical treatment with sertaconazole resulted
in an increase in murine tissue content of PGE2 (Figure 5b).
Treatment with a pharmacological inhibitor of COX-2,
NS398 abolished the anti-inflammatory activity induced by
sertaconazole in keratinocytes (Figure 4a) and PBMCs (Figure
4d), suggesting that a cyclooxygenase product is involved in
the anti-inflammatory signaling. Topical application of the
phorbol ester TPA to the skin of mice produces a long-lasting
edema that is associated with a marked influx of neutrophils
and mononuclear cells as well as the predominant formation
of leukotriene B4 (Rao et al., 1993; Lloret and Moreno, 1995).
Sertaconazole inhibited TPA-induced ear edema by 60%,
and NS398 (Figure 5a) and ibuprofen, a non-selective COX
inhibitor, also abrogated this effect (data not shown). Co-
treatment with sertaconazole and a neutralizing antibody to
PGE2 established that the cyclooxygenase product respon-
sible for the anti-inflammatory activity was PGE2 (Figure 4a
and 4d). Furthermore, exogenous treatment with PGE2

resulted in a reduction in cytokine release from PBMCs
comparable to the treatments with sertaconazole (Figure 4c).
Taken together, these results establish that the sertaconazole-
induced PGE2 production mediates the anti-inflammatory
activity of the antifungal agent.

Although PGE2 is primarily associated with proinflamma-
tory activity, the prostanoid has been also shown to elicit
anti-inflammatory effects. PGE2 has been shown to be
beneficial for treatment of immunological-based diseases
such as psoriasis where topical application of a gel contain-
ing PGE2 was found to improve psoriatic lesions (Remy et al.,
1986) and inhibition of PGE2 formation with non-steroidal
anti-inflammatory drugs were found to exacerbate the skin
condition (Katayama and Kawada, 1981). PGE2 has also been
reported to resolve mast cell-dependent allergic inflamma-
tion in mice by suppressing mediator release (Raud et al.,
1988). In human peripheral blood polymorphonuclear
neutrophils, PGE2 was found to cause a switch from
proinflammatory to anti-inflammatory strategy by switching
eicosanoid biosynthesis from predominantly 5-lipoxygenase-
initiated leukotriene B4 production to 15-lipoxygenase-
initiated lipoxin A4 production that carry ‘‘stop signals’’ for
inflammation (Levy et al., 2001). PGE2 activates at least four
separate EP receptor subtypes (EP1–EP4), which are coupled
to different intracellular signal transduction pathways
(Chung, 2005). Human PBMCs have been reported to express
only the EP2 and EP4 receptors (Strong et al., 2001). It is also
well established that in PBMCs and other cells, PGE2 signals
via the EP2 and EP4 receptors to induce adenylyl cyclase
activity by signaling through a Gs protein, resulting in
enhanced intracellular cAMP formation which negatively
regulates cytokine gene expression (Nigg et al., 1985; Betz
and Fox, 1991; Marcinkiewicz and Chain, 1993; Vassiliou
et al., 2003). cAMP induces activation of protein kinase-A
and subsequent phosphorylation of the cAMP-responsive
element-binding protein, resulting in inhibition of cytokine
genes containing cAMP-responsive element in their promo-
ters (Gonzalez and Montminy, 1989; Masquilier and
Sassone-Corsi, 1992). In keratinocytes, PGE2 activation of

the EP2 and a subtype of the EP3 receptor have been shown
to reduce the stimulated release of the chemokine CCL27
(Kanda et al., 2004). PGE2 has also been shown to
downregulate UVB-induced IL-8 release in keratinocytes
(Grandjean-laquerriere et al., 2005). Presumably, the anti-
inflammatory activity induced by sertaconazole is derived
from the PGE2-stimulated production of cAMP and subse-
quent inhibition of cytokine production from keratinocytes
and PBMCs.

In this study, we demonstrate that the antifungal agent
sertaconazole exhibits anti-inflammatory properties via the
p38–COX-2–PGE2 pathway. We previously evaluated the
anti-inflammatory activity of eight antifungal agents and
found that only sertaconazole nitrate reduced the release of
cytokines from activated lymphocytes and mitigated inflam-
mation in animal models of irritant contact dermatitis and
neurogenic inflammation (Agut et al., 1996; Liebel et al.,
2006). Treatment of keratinocytes under basal conditions
with the antifungal agents butoconazole, fluconazole, serta-
conazole nitrate, terconazole, tioconazole, or ketoconazole
indicated that only sertaconazole resulted in a direct
stimulation of P38 MAP kinase (data not shown). Thus, it
seems unlikely that activation of the p38–COX-2–PGE2

pathway contributes to the antifungal activity of the
compound, although a similar activation of the p38–COX-
2–PGE2 pathway may mediate or contribute additional
activity to other agents. For example, the immunomodulatory
compound cyclosporine A has been indirectly shown to
stimulate p38 in a human erythroleukemic cell line (Sawafuji
et al., 2003) and cyclosporine A also inhibits mitogenic
stimulation of PBMCs and increases the release of PGE2 from
PBMCs (McMillen et al., 1991). This could suggest that other
immunomodulatory agents could partially work through a
similar pathway as sertaconazole. Indeed, because the notion
that stimulation of p38 activation and PGE2 release can
produce an anti-inflammatory effect is paradoxical, it may be
overlooked as a pathway to explain anti-inflammatory
mechanisms of action. Our studies suggest that activation of
the p38–COX-2–PGE2 pathway by agents such as sertacona-
zole nitrate provides anti-inflammatory therapeutic benefits.

MATERIALS AND METHODS
Materials
Sertaconazole nitrate was obtained from Ferrer Pharmaceuticals

(Barcelona, Spain). Phytohemagglutinin (PHA) was obtained from

Remel (Lenexa, KS). TPA, non-immune serum, anti-PGE2 antiserum

and all routine reagents were obtained from Sigma (St Louis, MO).

Phospho-p38, p38, phospho-Hsp27, Hsp27, and ERK-2 antibodies

were obtained from Cell Signaling Technology (Danvers, MA). COX-2

antibody was purchased from Santa Cruz Biotechnology Inc. (Santa

Cruz, CA). Lipofectamine 2000 transfection reagent was obtained

from Invitrogen Corporation (Carlsbad, CA). PGE2 and NS398 were

obtained from Cayman Chemical (Ann Arbor, MI). P. acnes was

obtained from ATCC (Strain 11828; Manassas, VA).

Cells and cell culture

Human HaCaT keratinocytes (a gift from Dr NE Fusenig, Heidelberg,

Germany) were maintained in DMEM (Invitrogen Corporation)
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containing 10% fetal bovine serum, 4.5 mg/ml glucose, 2 mM

L-glutamine, 1% penicillin, and streptomycin. Cells were

maintained at o80% confluency at 371C in 5% CO2 (v/v). Normal

human epidermal neonatal keratinocytes were obtained from

Cascade Biologics (Portland, OR) and maintained in serum-free

Epilife medium (Cascade Biologics) supplemented with human

keratinocyte growth supplement containing 0.2% (v/v) bovine

pituitary extract, 5 mg/ml bovine insulin, 0.18mg/ml hydrocortisone,

5mg/ml bovine transferrin, and 0.2 ng/ml human epidermal growth

factor.

Phospho-p38/Hsp27 ELISA
Keratinocytes were plated at a density of 10,000 cells per well in 96-

well plates in Epilife media with growth supplement HKGS (Cascade

Biologics). The media were replaced with serum-free media for

24 hours. The cells were then treated with sertaconazole nitrate or

200 nM TPA (positive control) for different time points. The cells were

then washed with cold phosphate-buffered saline and lysed on ice

for 30 minutes in 50 ml of cell extraction buffer (Biosource Interna-

tional; Camarillo, CA). Phospho-p38 and phospho-Hsp27 levels

were measured in the lysates by using p38 MAPK [pTpY180/182]

and Hsp27 [pS82] ELISA kits (Biosource International) according to

the manufacturer’s instructions. Briefly, lysates were incubated in a

96-well plate precoated with a monoclonal antibody specific to p38

MAPK or Hsp27, then incubated with a phospho-p38 or phospho-

Hsp27 detection antibody. After extensive washing, phospho-p38/

Hsp27 levels were detected by incubation with horseradish

peroxidase-labeled antibodies, followed by colorimetric enzyme

assays.

Measurement of PGE2 release

Keratinocytes were incubated with or without 100 ng/ml TNF-a in

the presence of vehicle or indicated concentrations of sertaconazole

for 8 or 24 hours, respectively. The supernatant PGE2 amounts were

measured by ELISA according to manufacturer’s instructions (Assay

Designs Inc., Ann Arbor, MI).

Western blotting

Keratinocytes were grown in six-well plates to 80% confluency.

Cells were treated with sertaconazole for indicated times periods.

Cells were then washed with phosphate-buffered saline and

lysed with RIPA lysis buffer containing 65 mM Tris (pH 7.4),

150 mM NaCl, 1 mM EDTA (pH 8), 1% Nonidet P-40, 0.25% sodium

deoxycholate, 50 mM NaF, 1 mM Na3VO4, 1 mM phenylmethylsulfo-

nyl fluoride, and 1X protease inhibitor cocktail (Sigma). Lysates were

centrifuged and total protein was estimated in the supernatants.

Protein (20 mg) was loaded on SDS-PAGE followed by immunoblot-

ting with the specific antibodies and detection using the ECL

chemiluminescence detection system (Amersham Life Sciences;

Arlington Heights, IL).

Knockdown of p38 using siRNA

HaCaT keratinocytes were plated in 24-well plates at a density of

4� 104 cells per well and incubated overnight at 371C, 5% CO2.

Cells were transfected with SignalSilence negative control siRNA or

SignalSilence pool p38 MAPK siRNA (Cell Signaling Technology;

Danvers, MA) at 20 nM concentration using Lipofectamine 2000

transfection reagent (Invitrogen) according to manufacturer’s

instructions. This p38 MAP kinase siRNA will non-specifically

target all p38 MAPK isoforms. Cells were then grown for 72 hours at

371C, 5% CO2.

P. acnes stimulation of keratinocytes

Normal human epidermal keratinocytes were plated on 96-well

plates at a density of 10,000 cells/well in media (200ml/well) and

incubated at 371C, 5% CO2. Stationary phase P. acnes at a density of

1� 108 CFU/ml was obtained and 3 ml of this was spun and the

bacterial pellet resuspended in 10 ml Epilife media without

antibiotics or growth supplement HKGS. Sertaconazole,

SB203580, and NS398 were diluted in Epilife media without

antibiotics or HKGS to 2� concentration. Media were removed

from wells and replaced with 100ml of treatment compounds and

100ml of P. acnes. Samples were preincubated with SB203580,

NS398, and anti-PGE2 antiserum for 30 minutes before stimulation

with P. acnes. Plates were incubated for 24 hours at 371C, 5% CO2.

Supernatants were removed and analyzed for IL-8 (Upstate;

Charlottesville, VA) content using the Luminex100 system.

PBMC activation

Cytokine release from PBMCs was performed as described

previously (Agut et al., 1996; Liebel et al., 2006). PBMCs were

prepared from three different healthy adult male donors by

differential centrifugation on Ficoll-Hypaque (Biological Specialty

Corporation, Colmar, PA). For antibody treatments, PBMCs

were preincubated with NS398 or 1,000-fold diluted non-immune

serum or anti-PGE2 antiserum for 30 minutes before PHA stimula-

tion. PBMCs were then incubated at 371C at 5% CO2 for 24 hours

after which supernatants were collected and cytokine release

assayed.

TPA-induced ear edema (irritant dermatitis) and quantitation of
PGE2 levels in mouse ear biopsies

TPA-induced ear edema was performed as described previously

(Agut et al., 1996; Liebel et al., 2006). The Institutional Animal Care

and Use Committee at Johnson & Johnson approved all procedures

used in these experiments. Biopsies of 7 mm diameter were taken

from mouse ears that had been challenged with TPA only or treated

with sertaconazole or NS398 after TPA challenge. Biopsies were

homogenized on ice in 800ml cold phosphate-buffered saline

containing protease inhibitor cocktail (Sigma Aldrich; St Louis,

MO) with a Polytron homogenizer. Samples were centrifuged at

1,000 r.p.m. for 10 minutes at 41C and supernatants were removed.

PGE2 content of the supernatant was determined using PGE2

Detection Kit (Assay Designs Inc.; Ann Arbor, MI). Total protein

content of the biopsy samples was determined using BCA protein

assay kit (Pierce Biotechnology; Rockford, IL) and PGE2 levels

represented as ng/mg protein.

Statistical analysis

Data are presented as mean7SD. Cytokine release experiments

were individually performed from three separate donors of PBMCs.

Student’s t-test was used for comparisons between two groups.

A value of Po0.05 was considered significant.
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