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Abstract

The molecular structure of [Cu(sulfadimet) ]?SO(CH ) (sulfadimet5sulfadimethoxine54-p-aminobenzenesulfonamido-2,6-dimethox-2 3 2

ypyrimidine) was determined by single crystal X-ray diffractometry. It crystallizes in the monoclinic space groupP2 /c with Z54. The1

Cu(II) cation is in a distorted CuN square pyramidal coordination, involving four sulfadimethoxine molecules, one of them acting as a5

bidentate ligand. The infrared spectrum is briefly discussed on the basis of the structural peculiarities of the complex.
   2002 Elsevier Science Inc. All rights reserved.
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A number of sulfonamides, such as sulfanilamide, 18], we obtained single crystals of the respective sulfa-
sulfapyridine, sulfathiazole and sulfadiazine were the first dimethoxine complex and determined its structural charac-
effective chemotherapeutic agents employed systematically teristics and vibrational-spectroscopic behavior.
for the prevention and cure of bacterial infections in The complex was obtained by interaction of the ligand
humans [1,2]. with a Cu(II) solution, as follows: sulfadimethoxine,

After the introduction of penicillin and other antibiotics Sigma (3.10 g, 0.01 mol) was suspended in 100 ml of
the popularity and applications of sulfonamides decreased distilled water and dissolved by dropwise addition of 1 M
rapidly. However, they are still considered as useful in NaOH (final pH 9–10). The obtained solution was filtered
certain therapeutic fields, especially in the case of ophthal- off and 1.25 g (0.005 M) of CuSO?5H O (Sigma)4 2

mic infections as well as infections in the urinary and dissolved in 50 ml of water was added dropwise under
gastrointestinal tract [1]. continuous stirring; after this, the agitation was continued

On the other hand, the complex formation between for a further half an hour. The precipitated product, in the
metal ions and sulfadrugs, pointing to the combined form of a green-yellowish powder, was separated by
antibacterial activity of sulfonamides and the antimicrobial filtration and washed several times with distilled water.
activity of heavy metals constitute an important field of Finally, it was dried in air in the absence of light. The
research. Notwithstanding, the literature on the chemistry yield of various preparations was around 40%. The com-
of these types of sulfonamide derivatives, and especially position of the complex was confirmed by chemical
their structural characteristics, is rather incomplete and analysis. Analysis calcd. for [Cu(sulfadimet) ]?H O:2 2

often controversial [1]. C H N O S Cu: C 41.13, H 3.71, N 15.99, S 9.14 Cu24 28 8 9 2

Copper (II) complexes of different sulfonamides have 9.07; found C 40.94, H 4.05, N 15.86, S 9.25, Cu 9.20%.
been prepared and investigated in recent years [3–8]. In The complex is insoluble in water and in most of the
this context, and also as a continuation of our own studies common solvents, and very soluble only in dimethylsul-
on copper complexes with pharmacological activity [9– foxide (DMSO) andN,N9-dimethylformamide (DMF).

After several attempts, using the two last mentioned
solvents for the recrystallization of the complex powder, it*Corresponding author. Tel. / fax:154-221-425-9485.
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crystals adequate for a X-ray structural analysis, from Crystal data, collection procedures and refinement re-
DMSO. As shown by the results of this analysis, one sults are summarized in Table 1. Fig. 1 shows a stereo-
solvent molecule replaced the crystallization water of the scopic view of the Cu(II) environment. For clarity, the
original product. Besides, a comparison of the IR spectra used atomic numbering scheme is presented in Fig. 2 as an
of both complexes clearly confirms the same metal-to- ORTEP[23] drawing of a part of the structure. Selected bond
ligand arrangement and overall structural characteristics distances and angles around the metal center are given in
independently of the presence of H O or DMSO in the Table 2.2

lattice. The Cu(II) cation is five-fold coordinated to the N-
21FTIR spectra, in the range between 4000 and 200 cm , atoms of four sulfadimethoxine ligands, conforming a

were measured as KBr pellets on a Bomem MB 102 distorted square-pyramidal environment. The cations forms
instrument. four short Cu–N bonds at the pyramidal basis, two of them

Crystallographic studies were performed at 293 (2) K, with a sulfadimethoxine ligand acting as a bidentate ligand
on a green rhombic crystalline plate of approximate through a pyrimidine nitrogen atom [Cu–N(23)52.048(2)

˚ ˚dimensions 0.0830.0630.04 mm, using graphite mono- A] and the amide N-atom [Cu–N(22)52.047(2) A]. A
˚ third bond occurs along the lone electron pair of thechromated MoKa radiation (l50.71073 A), with a Kappa

N-atom of the terminal amino group belonging to aCCD diffractometer.
˚The structure was solved by direct and Fourier methods symmetry related ligand [Cu–N(210)52.054(3) A], while

and the final molecular model obtained by anisotropic the fourth short bond involves the pyrimidine nitrogen
˚full-matrix least-squares refinement of the nonhydrogen atom of a different ligand [Cu–N(13)51.980(3) A]. A

atoms. Intensity data were corrected for Lorentz, polariza- weaker Cu–N bond occurs at the pyramid apex, through
tion and absorption [19]. the lone electron pair of the terminal amino group of

The H-atoms were located in a Fourier difference map. another symmetry related ligand [Cu–N(119)52.369(3)
˚However, all but the amine hydrogen atoms (refined A].

isotropically), were positioned stereochemically and re- These peculiar metal-to-ligand interactions generate a
fined with the riding model. The methyl hydrogen atoms polymeric structure involving all the mentioned coordina-
were treated in the refinement as rigid bodies and allowed tion positions of sulfadimethoxine in bonding to different
to rotate along the corresponding C–C bond such as to cations, with the same arrangement around of each of
maximize the sum of the observed electron density at the them. Charge neutrality in each of the [Cu(sulfadimet) ]?2

three calculated H-positions. As expected, all methyl DMSO complex moieties is achieved by deprotonation of
groups converged to staggered positions. the amide group of both sulfadimethoxine ligands.

Programs used wereDENZO and SCALEPACK for data Tables containing complete information on atomic
reduction and correction [20] andSHELXS-97 [21] and coordinates and equivalent isotropic parameters, bond
SHELXL-97 [22] for structure solution and refinement, distances, angles and anisotropic displacement parameters
respectively. are available from the authors upon request and have been

Table 1
Crystal data, intensity collection parameters and refinement results for [Cu(sulfadimet) ]?DMSO2

Empirical formula C H N O S Cu26 32 8 9 3
21Formula weight (g mol ) 760.32

Crystal system/space group Monoclinic /P2 /c1
˚a (A) 13.0524(2)
˚b (A) 13.6038(3)
˚c (A) 19.0358(3)

b (8) 103.558(1)
Z 4

23D (calc.) (mg m ) 1.537x

F(000) 1572
u range for data collection (8) 1.60–25.00
Index ranges 2 15# h # 14, 2 16# k # 16, 2 22# l # 22
Reflections collected 72 268
Independent reflections 5799 [R 5 0.0998)int

Observed reflections [I . 2s(I)] 4646
Data/ restraints /parameters 5799/0/436

2Goodness-of-fit onF 1.002
Final R indices [I . 2s(I)] R 5 0.0414,wR 50.10621 2

Final R indices (all data) R 5 0.0589,wR 50.11721 2
23˚Largest diff. peak and hole (e A ) 0.397 and20.059
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Fig. 1. Plot of [Cu(sulfadimet) ].DMSO showing a stereoscopic view of the copper(II) environment and atoms displacement ellipsoids at 30% probability2

level. For clarity, the DMSO solvent molecule and the H atoms are not included in the drawing. Carbon atoms are shown with a simple boundary ellipse,
oxygen atoms with boundary and principal ellipses and nitrogen atoms with boundary and principal ellipses and octant shading.

Fig. 2. Plot of the Cu(II) bonding to two of the four ligand molecules in [Cu(sulfadimet) ]?DMSO, showing the non-H atom numbering scheme.2

Table 2
a˚Bond distances (A) and angles (8) around Cu(II) in [Cu(sulfadimet) ]?DMSO2

Cu(1)–N(13) 1.980(2) Cu(1)–N(23) 2.048(2)
Cu(1)–N(22) 2.047(2) Cu(1)–N(21)[1 2.054(3)
Cu(1)–N(11)[2 2.369(3)
N(13)–Cu(1)–N(23) 97.26(10) N(13)–Cu(1)–N(22) 148.90(10)
N(23)–Cu(1)–N(22) 64.68(9) N(13)–Cu(1)–N(21)[1 96.52(10)
N(23)–Cu(1)–N(21)[1 159.60(11) N(22)–Cu(1)–N(21)[1 96.16(10)
N(13)–Cu(1)–N(11)[2 114.25(11) N(23)–Cu(1)–N(11)[2 94.51(10)
N(22)–Cu(1)–N(11)[2 93.16(10) N(21)[1–Cu1–N(11)[2 93.46(11)

a Symmetry transformations used to generate equivalent atoms:[1: 2 x 1 1, y 2 1/2, 2 z 1 1/2; [2: 2 x 1 2, y 1 1/2, 2 z 1 1/2.
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deposited at the Cambridge Crystallographic Data Centre, amino group, a fact which explains the doublet structure
reference number CCDC200183. in this region after coordination, as a consequence of

The positions of some of the most characteristic vi- the involvement of the amino groups in metal bonding.
brations of the free sulfadimethoxine ligand and the • The small shift of then(S–N) vibration after coordina-
[Cu(sulfadimet) ]?H O complex are compared in Table 3. tion can be explained by the deprotonation of some of2 2

The proposed assignment is based on some general refer- the NH groups and the concomitant reinforcement of
ences [24,25] as well as on data of related complexes the involved S–N distances.
[3–8]. Some brief comments on these assignments are
made as follows:
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