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Abstract

Temperature-constrained cascade correlation networks (TCCCNs) were applied to the identification of the powder pharmaceutical samples of
sulfaguanidine based on near infrared (NIR) diffuse reflectance spectra and their first derivative spectra. This work focused on the comparison
of performances of the uni-output TCCCN (Uni-TCCCN) and multi-output (Multi-TCCCN) by near infrared diffuse reflectance spectra
and their first derivative spectra of sulfaguanidine. The TCCCN models were verified with independent prediction samples by using the
“cross-validation” method. The networks were used to discriminate qualified, un-qualified and counterfeit sulfaguanidines pharmaceutical
powders. The results showed that single outputs network generally worked better than the multiple outputs networks, and the first derivative
spectra were more suitable for the identification comparing with original diffuse reflectance spectra. With proper network parameters the
pharmaceutical powders can be classified at rate of 100% in this work. Also, the effects of parameters and related problems were discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Near infrared (NIR) spectrometry is a simple, fast and
non-destructive way for organic compound analysis. The
near infrared region covers the wavelengths between 700 nm
(near the red end of the visible spectrum) and 3000 nm (near
the beginning of infrared stretches of organic compounds).
Absorption peaks in the NIR region originate from over-
tones and combinations of the fundamental (MIR) bands.
The near infrared spectra are used chiefly for identifying or
quantifying molecules that include unique hydrogen atoms.
The vibration information including H group in molecules
can be obtained. The samples can be measured without or
with little pre-treatment. Derivative spectra are often used to
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detect small peaks, to enhance small peak separation and to
eliminate slop background. NIR spectrometry has broad ap-
plications including agricultural products and foods[1–6],
pharmaceutical samples[7–16]. NIR spectra are seriously
overlapped, so they are only useful with the aid of chemo-
metric methods[17–22].

The most popular artificial neural network in analyti-
cal chemistry is back-propagation neural network (BNN)
[23–25]. The BNN adjusts all the weights in the network si-
multaneously, so it may be easier to cause chaos. The BNN
constructs its own topology prior to training. The main
drawbacks of BNN include slower training rate and being
easily trapped in local minimum. The cascade correlation
network (CCN) was developed to alleviate these problems
[26]. The CCN configures its own architecture as it trains.
CCN starts with a minimal network (network with only one
hidden neuron) and then sequentially adds hidden neurons
until the output error decreases below a user-defined value.
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Each new hidden unit receives values from network input
units and previously installed hidden units. Therefore, the
hidden units are connected in the cascade form. Several
candidate units can be trained in parallel, and the one with
largest covariance between candidate unit and its residual
errors can be selected as the next hidden unit to install into
the network. Once trained, the hidden units are no longer
adjusted, thus, only one unit is trained at a time. This trait is
somewhat unique for the CCN and eliminates the chaos of
simultaneously adjusting all processing units as adjustable
parameters as in the BNN training. The number of hidden
units of the CCN will increase until the desired error is
obtained or the network converges. So the most significant
advantages of the CCN over the BNN are the auto-adjusting
network architecture and faster training rate. But the CCN
still does not solve the problem of overfitting. One method
that overcomes overfitting is the use of computational
temperature, which is a similar parameter to that used in
simulated annealing[27]. The advantage afforded by a
temperature constraint is the removal of an extra degree of
freedom manifested in the lengths of the weight vectors in
the processing units of the neural network. It is known that
overfitting is related to the Euclidean length of a set of re-
gression coefficients. The weight vectors of neural network
processing units can be considered as non-linear regression
coefficients. The temperature constraint optimizes the length
of the weight vectors for each hidden processing unit. The
temperature constraint results in softer models that tend to
have greater generalizing abilities[27–29]. Sulfaguanidine
is a commonly used medicine which acts as antimicrobial
agents by inhibiting bacterial growth and activity. In the
production of sulfaguanidine tablet, the quality control of
the sulfaguanidine powder is required and have significant
importance. It is desirable that a fast and non-destructive
analytical method is developed in pharmaceutical tablet
production. The aim of this work is to test the applicability
of the temperature-constrained cascade correlation networks
(TCCCNs) in quality control in pharmaceutical produc-
tion. Many methods including various spectrometric and
chromatographic ones have been applied in quality control
of pharmaceutical industry. NIR techniques provide fast,
non-destructive, and little or no sample pretreatment. The
combination of NIR techniques with various chemometric
methods is becoming a powerful tool in quality control. The
TCCCN has been successfully used in classification exam-
ples including ion mobility spectrometry (IMS), GC–MS,
etc. In the present study, TCCCN is attempted to apply to
the classification of sulfaguanidine in near infrared diffuse
reflectance spectra as quality control method. This method
was verified with independent prediction samples.

2. Theoretical basis

The TCCCN does not connect the inputs directly to the
output units. Instead, all the inputs to the output unit must

Fig. 1. Schematic architecture of TCCCN.

pass through the fuzzy hidden units, which help to pre-
vent overfitting.Fig. 1 is a schematic architecture of the
single-output TCCCN.

The number of inputs into the output units will equal
to the number of hidden units. The hidden units are added
sequentially. Each time a hidden unit is added, the output
weight vector is recalculated by regression, and new residual
errors are generated. The hidden units are trained by adjust-
ing their weight vectors so that the pooled magnitude of the
covariance between a hidden unit’s output and the residual
error from the output units is maximized.

The candidate units for the CCN are temperature-constrai-
ned sigmoidal functions. The hidden unit comprises a linear
and a non-linear operation. The linear operation is obtained
by

netij =
∑γ

m=1wjmxim

|wj| + bj (1)

in whichγ is the number of input connections to unitj, wjm a
component of the weight vector, andxim the input activation
coming from themth neuron in the preceding layer for theith
object. For the temperature parameter to be meaningful, the
weight vector must be constrained to a constant length. The
weight vector is normalized to unit Euclidean length. The
vector length of thejth hidden unit weight vector is defined
as |wj |. The bias value for thejth hidden unit is designated
asbj.

The non-linear operation is given by

oij = f(netij ) = (1 + e−netij /tj )−1 (2)

in which the results (netij) are input to the transfer function,
the outputs of thejth hidden unit isoij and tj is computa-
tional temperature.tj is adjusted so that it maximizes the
magnitude of the first derivative of the covariance between
the output and the residual error with respect to temperature.
The temperature constrained transfer function is applied to
hidden layer. The weight and bias parameters are adjusted
so that the magnitude of pooled covariance between a hid-
den unit output and the residual error from the output units
is maximized. The covariance magnitude (|Cj |) of the out-
put from candidate unitj and the residual error from output
k is obtained from

|Cj| =
p∑

k=1

∣∣∣∣∣
n∑

i=1

(oij − ōj)(eik − ēk)

∣∣∣∣∣ (3)



X. Cui et al. / Talanta 64 (2004) 943–948 945

Table 1
The component content of sulfagunidine (%)

Samples Sulfagunidine Starch Mg stearate

Maximum Minimum Average Maximum Minimum Average Maximum Minimum Average

Qualified samples (27) 96.22 87.98 92.1 11.47 3.23 5.69 0.68 0.34 0.51
Un-qualified samples (8) 74.50 58.56 65.87 40.91 25.02 33.56 0.87 0.36 0.57
Counterfeit samples (5) 0 0 0 99.65 99.36 99.51 0.64 0.37 0.49

for which the covariance is calculated with respect to then
observations in the training set. The absolute values of the
covariances are added for thep output units. The averages
are obtained for then objects in the training set for the
hidden unit output (oj) and error (ej). The denominator of
n − 1 is omitted from the calculation, because it is constant
through the entire training procedure. The weight vectors
are adjusted so that |Cj | is maximized.

As shown inFig. 1, the output unit is linear, and the hid-
den units are temperature-constrained sigmoidal functions.
The weight vector is adjusted so that the magnitude of the
covariance between the residual output error and the output
of the hidden unit is maximized. The weight vector will be
constrained to unit vector length. Once the hidden unit is
adjusted, it will be held constant. The output unit is read-
justed by regression with the two hidden units’ output and
bias value as inputs. This procedure continues until a spec-
ified residual error is reached. Each time a hidden unit is
added and trained, the output unit weight vectors are recal-
culated by regression of the target values onto the column
space defined by the hidden unit outputs.

The temperature-constrained cascade correlation net-
works with uni-output (denoted as Uni-TCCCN) and with
multi-output (Multi-TCCCN) were used for the classifica-
tion. The multi-output network is similar to the one given
in Fig. 1 except for multi-output units are used.

3. Experimental

3.1. Instrument and working conditions

A Shimadzu NIR Spectrophotometer (model ISR-3100)
with diffuse reflectance accessory was used. Slit height
is 12 nm. Scan range is 1300–2500 nm. Each sample was
scanned two times and the average was used. Data were col-
lected in every 1 nm. So 1201 data points were collected for
each spectrum. The temperature constrained cascade cor-
relation neural network software was written in C++ and
compiled with Borland C++ 5.0. The program run on an
Intel Pentium II 450 MHz processor equipped with 128 MB
of RAM, which was operated under Windows 2000.

3.2. Reagents and samples

The pharmaceutical powder samples of sulfaguanidine
comprises sulfagunidine, magnesium stearate, and starch,

which were prepared according to the China Pharma-
copoeia. Twenty seven qualified samples (nos. 1–27), eight
un-qualified samples (the amount of sulfagunidine were
lower than the requirement, nos. 28–35) and five counter-
feit samples (do not contain any sulfagunidine at all, nos.
36–40) were used. The amount of sulfagunidine in each
classes of samples were given inTable 1.

3.3. Discrimination method

Two data sets were used for each neural network model.
The training set was used to build the model, and the test-
ing set was used to evaluate the model. Binary coding of
the target values was used for the classification. For exam-
ple, output vectors [1 0 0], [0 1 0], and [0 0 1] were used to
distinguish qualified, un-qualified and counterfeit samples,
respectively.

A threshold value of 0.5 was used to classify the network
outputs. An output value that was greater than or equal to
0.5 indicated class assignment. The criterion for class as-
signment is more robust than the ‘winner-take-all’ criterion
and allows for multiple classifications of the same object.

The cross-validation method was used for assessment of
the networks.

4. Results and discussions

Near infrared spectrometry has been found more and
more applications in various fields, mainly including phar-
maceutical, food, textile industries. The main advantage of
measurements based on NIR technique is non-destructive
analysis and none or little pretreatment for sample prepa-
ration. However, because the NIR spectra are composed of
many overtones and combination bands, the NIR spectra are
usually severely overlapped. These make the NIR spectra
difficult to interpret. Therefore, chemometric methods have
to be used in data interpretation and calibration in almost all
the NIR applications. The near infrared diffuse reflectance
spectra and their derivative spectra of sulfagunidine, mag-
nesium stearate, starch were given inFig. 2(A) and (B),
respectively. There were some differences of dampness and
brightness between samples, however, the effects of damp-
ness and brightness of samples in calibration set were min-
imized by randomly mixing the samples. It can be seen that
the spectra of the three components were seriously over-
lapped. The overlapped spectra deteriorate the separation
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Fig. 2. (A) Near-infrared diffuse reflectance spectra and (B) first derivative spectra (1) sulfagunidine (2) Mg stearate, and (3) starch.

of characteristic peaks. Besides, the original spectra have
slop background. The slop background also deteriorates
final sample classification. To enhance the separation of
the spectra and to eliminate the slop background, the first
derivative spectra were used for sample classification. It
will be seen in the classification results section of this paper,
that the classification results are quite satisfactory, these are
partly due to the enhancement of peak separation and the
elimination of the slop background.

4.1. Effect of pre-defined relative errors

In network training, a pre-defined relative error should
be given so that the training process can terminate when
output error reaches or lower than this value. If the calculated
relative error is larger than the pre-defined relative error,
the networks add automatically a hidden unit, and calculate
again. The training error is defined as the relative root mean
square error of calibration (RRMSEC) and is calculated by

RRMSEC=
√√√√∑n

i=1
∑p

j=1(ŷij − yij )2∑n
i=1

∑p

j=1(yij − ȳij )2
(4)

in whichp is the number of classes or network outputs,n the
number of training spectra, and the target value for theith
object andjth class isyij, ŷij is the corresponding network
estimate of the target value, andȳj is the average target value
for thepth output.

Prediction performance is evaluated by using root mean
square error of prediction (RMSEP) defined as

RMSEP=
√∑n

i=1
∑p

j=1(ŷij − yij )2

np
(5)

The relative root-mean-square error of prediction (RRM-
SEP) is similar to the RRMSEC given inEq. (4)except only
the test set data is used[30].

For the Multi-TCCCN, each output node represents one
specific class, and the network is trained so that a specific
node produces the largest output among all nodes to show

the presence of that specific class. Classification results can
be obtained simultaneously by using a Multi-TCCCN. In
the classification temperature-constrained sigmoid function
was used in hidden unit, and the output unit was sigmoid
function. The RMSEPs of the pharmaceutical sample are
given in Fig. 3. With the decrease of pre-defined relative
errors, the RMSEPs decreased. It can also be seen that the
standard errors for derivative spectra are lower than those
for original spectra.

Uni-TCCCN was also used for comparison. In uni-output
network there is only one output unit in the network, so
only one class can be predicted at a time. The whole
Uni-TCCCN is composed of several uni-output networks,
therefore, multi-class classification can also be obtained
by using the Uni-TCCCN system. The RMSEPs of the
pharmaceutical sample with sulfagunidine are also shown
in Fig. 3. The prediction standard errors seem to be less
affected by the pre-defined training errors when the values
are at 0.6 or above.

4.2. Effect of the number of candidate units

In TCCCN the hidden units were added automatically
when needed. In the training process, several units can be
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Fig. 3. Changes in prediction errors with different pre-defined relative
errors (r refers to diffuse reflectance spectra, d refers to first derivative
spectra) (Multi stands for using Multi-TCCCN, Uni stands for using
Uni-TCCCN).
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Fig. 4. Error obtained with different pre-defined relative errors in different
input function and output function (Multi stands for using Multi-TCCCN,
Uni stands for using Uni-TCCCN) (TC refers to temperature-constrained
sigmoidal, S refers to sigmoidal, L refers to linear).

trained in parallel. These units are called “candidate units”.
The one with largest covariance between candidate unit and
its residual error was selected to the network. To investi-
gate the effect of number of candidate units, network train-
ing with various numbers of candidate units (from 3 to 7)
were tested. Results show that the effects of candidate units
number are similar for the Multi-TCCCN and Uni-TCCCN,
but somewhat different for original and derivative spectra.
When the number of candidate units is larger, the prediction
errors seem to increase. Three candidate units were used in
this work.

4.3. Effect of transfer functions

The types of transfer functions play an important role in
network performance. In this section, the effect of differ-
ent types of transfer functions are investigated. The effects
of sigmoidal, temperature-constrained sigmoidal, and linear
functions in hidden units on standard error of prediction with
Uni-TCCCN and derivative reflectance spectra are shown
in Fig. 4(A), respectively. It can be seen that lower predic-
tion errors were obtained when temperature-constrained sig-
moidal function was used. However, the network with linear
hidden units gives relatively high prediction errors.

The effect of different types of transfer functions in out-
put units on prediction was also investigated. The results
are shown inFig. 4(B). Networks with sigmoidal function
give better predictions. Therefore, temperature-constrained
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Fig. 5. Effect of different pre-defined relative error on classification ac-
curacy.

sigmoidal function for hidden units and normal sigmoidal
function for output units were used in this work.

4.4. Classification results

Based on the investigation of the effect of network pa-
rameters and optimization, compromised working param-
eters were chosen. The classification results are shown in
Fig. 5. It can be seen that Uni-TCCCN works better than the
Multi-TCCCN. For example, with Uni-TCCCN, all the sam-
ples can be correctly classified by using both original diffuse
reflectance spectra and their derivative spectra even though
the pre-defined relative error of 0.6 was set. The classifica-
tion can only reaches up to 95% when original reflectance
sopectra and Multi-TCCCN were used.

5. Conclusion

Near infrared spectrometry is a non-destructive analyti-
cal method, so it is very suitable for quality control in pro-
duction process. However, spectra of different components
are seriously overlapped in this NIR region. NIR spectra
can be useful if only proper data processing methods are
used and combined with chemometric methods. The use of
derivative NIR spectra enhanced the separation of spectra.
Temperature-constrained cascade correlation network (TC-
CCN) has been approved to be a good approach for the
classification of qualified, un-qualified, and counterfeit phar-
maceutical powder samples of sulfaguanidine. Results show
that the TCCCN with uni-output performs better than the
TCCCN with multi-output.
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