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Simultaneous Determination of Lead and Sulfur
by Energy-Dispersive X-Ray Spectrometry.
Comparison between Artificial Neural Networks
and Other Multivariate Calibration Methods
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The need for mathematical methods to model data in energy-dispersive x-ray fluorescence (EDXRF)
spectrometry is common owing to the overlapping of intense spectral lines in complex samples. This
overlapping generally produces a large amount of scatter in the analytical curve, preventing simultaneous
direct determinations of some elements without data treatment. This work demonstrates the performance
of artificial neural networks (ANN) and other methods of multivariate calibration (linear or not) for the
simultaneous determination of sulfur and lead, when overlapping of the sulfur Ka spectral line (2.308 keV)
and the lead Ma line (2.346 keV) is observed. The performance of neural networks was compared by thef -
test with five other data treatment methods: PLS (partial least squares), POLYPLS (polynomial partial least
squares), NNPLS (partial least square neural networks), LR (linear regression) and CI (corrected intensity).
It was verified that the ANN produces better predictions than the other methods, for both sulfur and lead,
allowing their simultaneous determination in solid samples with good accuracy. Copyright 1999 John
Wiley & Sons, Ltd.

INTRODUCTION

Nowadays the use of instrumental techniques that allow
simultaneous determinations have aroused the attention
of the scientific community owing to the growing need
for chemical analysis in a great variety of matrices. In
this sense, energy-dispersive x-ray fluorescence (EDXRF)
spectrometry is a very useful spectroscopic technique,
since it can be applied to several different types of sam-
ples, including solid (powdered or not), liquid (of high or
low viscosity) and even those of a pasty consistency, with-
out extensive sample treatment. Nevertheless, a drawback
of EDXRF is the difficulty of quantifying species when
they suffer spectral interference from another species
present in the sample. There is commonly a loss of the
calibration linearity1 – 3 and to model the data the use of
mathematical methods is essential.

An example of spectral interference in EDXRF is
treated in this paper, viz. the determination of sulfur in
the presence of lead. In this case, there will be strong
overlapping between the S K̨line and the Pb M̨ line.
A possible practical application for this particular case of
signal overlapping will be the simultaneous monitoring of
S and Pb in fuels, to which are added organic compounds
of lead. Generally fossil fuels contain appreciable amounts
of sulfur and its control is important for the environment.

A mathematical tool frequently used to model cases
of spectral interference is the correction intensity (CI)
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method.4,5 In this case, correction coefficients are cal-
culated from data obtained with standards to model the
inter-element effects. The most popular algorithm is the
Lucas and Price method, in which the analysis of an ele-
ment I with n possible interfering elements is expressed
in accordance with the equation

CI D BI CKIRI C
N∑
JD1

AIJRIRJ .1/

whereC is the concentration of elementI, R is the relative
intensity of the element,A is a constant that represents the
effect of elementJ on the intensity of elementI andB and
K are calibration coefficients of elementI as a function
of its intensity.

Another commonly used technique in spectroscopic
data modeling is the partial least squares (PLS) method.6 – 8

The basis of this method is to associate mathematically the
signals from several channels with the concentrations of
the species involved,9 as is done in a typical calibration
procedure. Nevertheless, instead of using signal intensi-
ties, linear combinations of them are used. This procedure
reduces the signal dimensions to a much smaller parameter
collection that is still very representative.

Some PLS alternatives can be used in cases where a
non-linear relationship is present.10,11 Among them, poly-
nomial PLS (POLYPLS) and PLS with neural networks
(NNPLS) will be considered. POLYPLS is basically iden-
tical with linear PLS, the only difference being that rela-
tionships are expressed by a variable degree polynomial.

Another very useful alternative for the treatment of non-
linear data is artificial neural networks (ANN), which can
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be defined as a set of mathematical models and compu-
tational algorithms specially designed to imitate human
brain information processing and knowledge acquisition.
So designed, the ANN are able to acquire informa-
tion and provide models, even when the information
and data are complex, noise contaminated, non-linear or
incomplete.12 – 14

The neural network is now considered a mathematical
tool of widespread application, especially in analytical
chemistry. Excellent models with high generalization capa-
cities are being designed for simultaneous analyses of
multicomponent systems using spectroscopic,15 chromato-
graphic16 and electrochemical17 techniques. Besides model-
ing linear or non-linear data, ANN find applications in
pattern recognition,18 signal processing and the analytical
chemistry of processes.19

The ANN used in this work is composed of three
neuron layers, which are represented by black circles
in Fig. 1. The input signals are the x-ray fluorescence
intensities at several energies of the EDXRF spectra and
the output signals are the sulfur and lead concentrations in
the standard samples used. After entering the input layers,
the signals will be sent to the hidden layer neurons where
they will be processed and sent to the output neurons.
There they will be processed again before exiting the
neural network. In the processing steps, the signals in
the hidden layer or in the output layer are multiplied by
each neuron weight and summed over all the layer. This
procedure gives rise to the entrance net signal, or simply
Net, represented by

NetD
∑

wiIi .2/

where wi represents the weight of theith neuron and
Ii is the ith X-ray fluorescence intensity. Since Net is
calculated, a sigmoidal function (known as the transfer

Figure 1. Typical EDXRF spectrum of solid samples in a charcoal
matrix, showing the regions of interest and the associated neural
network used. The dotted lines limit the energy range selected
as input in the neural network, the black circles are the neurons
and the continuous lines are the connections between them.

function) is applied to it. The value of this function is the
signal sent to the output layer neurons where the Net will
again be calculated. Finally, a linear transfer function is
applied to the output layer Net and the resulting signal is
sent out of the ANN. In Fig. 1, a special type of neuron
called bias can be observed, and it is utilized to add a
proportional constant to the Net.20

The weights and biases, in hidden and output layers,
are adjusted in the training step in such a way that the
ANN outputs are equal to the sulfur and lead concen-
trations used in the calibration samples. This is done in
accordance with a convergence criterion, previously deter-
mined, as is done in a typical calibration procedure. The
back-propagation algorithm20 is normally used to weight
corrections, mainly owing to the facility with which it
can be implemented. However, this algorithm has prob-
lems in convergence properties. In this work, the weight
corrections were made via a variant of the Gauss–Newton
method, known as the Levenberg–Marquardt method,21 – 23

that is faster in convergence and robust. The corrections
are calculated as

W D .J TJ C �I /�1J Tg .3/

whereJ is the Jacobian error matrix for each weight,� is
a positive scalar,I is the identity matrix andg is an error
vector. The sum of the squared errors is usually used as
the vectorg:

g D
m∑
iD1

.yreal,i � ypredicted,i/
2 .4/

wherem is the total number of samples used in the training
step of the ANN.

The training step ends when the difference between the
real lead and sulfur concentrations and those evaluated
by the ANN (ypredicted) reach the convergence criterion. At
this point, the network is trained and a set of distinct data
(EDXRF spectra and sulfur and lead concentrations) can
be used to evaluate the generalization properties of the
ANN. These properties are usually good, especially when
the data show nonlinearity.24,25

In addition to the preceding methods, a combination
of ANN with PLS can be applied, known as NNPLS.
This procedure facilitates the modeling both of linear
cases and of those with weak non-linearities. The other
steps are identical with those of linear PLS. It must be
kept in mind that the difference between the models is
that NNPLS is based on scores, whereas the conventional
ANN is not. However, it is possible to elaborate models
with ANN using scores as inputs into the ANN, instead
of pure spectra.

Linear regression was also used in this work for com-
parison with the other methods of multivariate calibration
listed above. The relationship taken was the signal maxi-
mum of each element with its concentration.

EXPERIMENTAL

Samples

A set of 38 samples was prepared from mixtures made
with K2SO4 (Synth) and Pb(NO3)2 (ECIBRA) in char-
coal (NORIT), in such a way that the sulfur and lead
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Table 1. Compositions of synthetic mixtures

Sample Composition (%, m/m) Sample Composition (% m/m)
No. Pb S No. Pb S

1 1.960 5.004 20 2.014 15.996
2 2.009 8.000 21 2.997 1.997
3 1.995 10.990 22 2.996 15.998
4 1.978 14.010 23 7.998 7.002
5 2.001 16.993 24a 7.982 10.994
6 5.017 2.006 25 7.987 14.005
7 7.990 2.000 26 7.987 15.999
8 11.004 1.999 27 7.005 7.998
9 14.006 1.998 28 10.995 8.003
10a 16.991 2.000 29 2.989 12.007
11 1.994 1.997 30 3.993 9.002
12 4.970 4.999 31 6.014 10.996
13 4.997 7.996 32 8.997 4.001
14 5.013 10.998 33a 11.994 2.998
15 4.996 13.996 34a 14.997 2.000
16a 4.008 16.993 35 2.009 15.001
17a 7.972 5.000 36 3.986 6.000
18a 11.001 4.994 37 3.992 11.000
19 1.996 3.001 38a 10.997 4.000

a Samples used for prediction.

concentrations were between 2.00 and 17.00% (m/m) and
the total mass was equivalent to 1.0000 g. Before weigh-
ing, the solids were sieved to homogenize their grain size
(100–130 mesh).

Instrumentation and measurements

Spectra were taken using a Spectrace 5000 x-ray fluore-
scence spectrometer with an irradiation time of 50 s under
vacuum and without a radiation filter. The rhodium x-
ray tube was operated with a voltage of 15 kV and a
current of 0.02 mA. As indicated in Table 1, 30 samples
were selected to elaborate the calibration models and the
remainder were used for prediction purposes.

Pretreatment of the EDXRF spectra

The dotted lines in Fig. 1 show the spectral regions used
to create the calibration models. In ANN, the spectra
were normalized between 0 and 1 and the concentrations
between 0.2 and 0.8. In using PLS and its non-linear
variants, the data were centered on the average and scaled
for unity variance.

Data modeling

MATLAB 26 programs were developed to model the data,
using routines of PLS Toolbox version 1.327 and of
Neural Network Toolbox version 2.0.28 The calculations
were made with a Pentium microcomputer operating at
150 MHz with 32 Mbyte of RAM.

RESULTS AND DISCUSSION

The standard errors of calibration (SEC) and prediction
(SEP) were used to analyze the performance of the six

Table 2. Standard error of the calibration (SEC) and predic-
tion (SEP) results using the six calibration models

SEC (%) SEP (%)
Mathematical model S Pb S Pb

Artificial neural networks 5.0 6.3 4.0 9.2
PLS neural networks 7.3 14.2 8.4 12.2
PLS polynomial 7.3 14.3 8.6 13.3
PLS linear 12.3 16.8 7.8 17.2
Correction intensity method 11.1 12.0 8.3 10.2
Linear regression 17.5 21.5 20.3 22.5

models, as shown in Table 2. The SEC values were
obtained using the equation

SEC.%/ D 100

cm


n∑
iD1
.Cij � OCij/2

n� k � 1


1/2

.5/

whereCij is the actual concentration,OCij is the estimated
concentration of thejth component of theith standard,cm

is the average concentration of the standards andk is the
number of degrees of freedom. For PLS,k is the number
of latent variables. In ANN, the number of degrees of
freedom is unknown,29 so n, the number of calibration
samples, is used as an approximation for the denominator
in Eqn (5).

The SEP columns in Table 2 represent the percentage
relative standard deviation of the prediction for thejth
component of the validation set. In the equation

SEP.%/ D 100

cm


n∑
iD1
.Cij � OCij/2

p


1/2

.6/

Cij, OCij and cm are the same as in Eqn (5) andp is the
number of samples used in the validation set.

From Table 2, it can be seen that the LR method was not
efficient, since SEC and SEP were high for both lead and
sulfur. The weak performance of this method for sulfur is
basically due to the non-linearities and for lead to the high
noise level around the Pb L̨line used in the calibration
step. Figure 2(a) and (b) illustrate this fact, since they
are the analytical curves for these two elements evaluated
using the maximum at each peak (Pb L˛ and S K̨ ).

The CI model was chosen to evaluate the effects of
potassium, present in the matrices (K K˛ D 3.313 keV),
to verify the possibility of interference of this element in
the quantification of the other species. The values of the
Aij coefficients [Eqn (1)] for the interference between the
elements S–K and Pb–K were�1.50ð10�4 and�1.58ð
10�3, respectively, so this interference was not considered
relevant. When compared with LR, this method allowed
modeling of the system with a significant decrease in the
SEP values, equal to 8.3% for sulfur and 10.2% for lead
(Table 2).

Using linear PLS, four latent variables were retained,
based on cross-validation,6 two more than theoretically
necessary, since the system has two components. The
need to include more components indicates again the
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Figure 2. Linear regression models using (a) the maximum values of the S K˛ line x-ray fluorescence intensity (normalized between 0
and 1) versus sulfur concentration and (b) the maximum values of the Pb L˛ line x-ray fluorescence intensity (normalized between 0
and 1) versus lead concentration.

non-linearity,beingdifficult to modelby linearPLS.Here
the SEPwere7.8%for sulfur and17.2%for lead.

In POLYPLS, four latentvariablesanda second-degree
polynomial provided the best model. Table 2 shows a
lowerSEPfor sulfur comparedwith thelinearPLSvalues.
This is an indication that part of the non-linearitieswere
modeledin this case.

In NNPLS, four latent variableswere againtakenand
the ANN that provided the best model had a hidden
layer with threeneurons.The transferfunction between
the input and the hidden layer was sigmoidal, and that
betweenthe hiddenlayer andthe output layer waslinear.
In this modeling,the network was trainedwith the Lev-
enberg–Marquardtmethod.The valuesof SEC and SEP
were very close to thoseobtainedby POLYPLS. Hence
the performancesof NNPLS andPOLYPLS in modeling
the systemcanbe consideredequivalent.

The ANN architecturewas organizedin three layers:
the input layer with 54 neurons(one for eachselected
energy, asrepresentedby the dottedlines in the EDXRF
spectrum,Fig. 1), thehiddenlayerwith sevenneuronsand
the output layer with two neurons,onefor sulfur andthe
otherfor lead.The numberof neuronsusedin the hidden
layer was chosenby continuouslyadding neuronsto it
and thenevaluatingthe averageSEPfor leadandsulfur.
Using this procedure,sevenneuronsprovidedthe lowest
valuefor this averageSEP,asshownin Fig. 3.

The inputswerethe normalizedspectrabetween0 and
1 andtheoutputswerethesulfur andleadconcentrations.
A sigmoidal function was used as a transfer function
betweenthehiddenandtheoutputlayers,whereasa linear
function was usedat the output layer. Finally, the ANN
was trained by the Levenberg–Marquardt algorithm to
havethe weights that provide the lowest SEPand SEC.
ANN wasthe bestmodel,ascanbe seenin Table2.

An F-test was used to comparethe relative perfor-
mancesof all six models,at the 95% confidencelevel:29

F.pi, pj/ D
(

SEPi
SEPj

)2

.7/

wherepj is thenumberof samplesusedin ANN andpi is
the numberof samplesusedin PLS,POLYPLS, NNPLS,
CI andLR.

Figure 3. Plot of the average SEP versus the number of neurons
added to the hidden layer.

By using the F-test in the prediction data set as a
figure of merit, onecanseein Table3 that for sulfur, the
ANN is betterthanall the others,at the 95% confidence
level (Fcritical D 3.44). This shows the complex non-
linearbehaviorof this element,which cannotbe properly
modeledfor non-linearvariationsof the PLS,suchasthe
correctedintensitymethod.Thescatter(or deviationfrom
thestraightline) of theS K˛ line canbeattributedto two
factors:Pb M˛ line interferenceandnoise.

In the caseof lead,the applicationof NNPLS, POLY-
PLS and CI showedsimilar results to those of ANN,
since the F-values were less than Fcritical (Table 3). In
principle, this resultcanbe attributedto the fact that lead

Table 3. Comparison of neural networks with
five other data tr eatmentmethodsusing
the F -test

F-test
Mathematical model S Pb

PLS neural networks 4.4 1.6
PLS polynomial 4.6 2.0
PLS linear 3.8 3.5
Correction intensity method 4.3 1.2
Linear regression 25.7 6.0
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has a line free of interference, L˛, and a linear behav-
ior is expected. Nevertheless, Table 3 illustrates that even
here the non-linear methods provide better results than the
linear methods. In addition to the instrumental noise, the
differential x-ray absorption coefficients of the standards
as a function of the relative matrix constitution can also
explain this effect.

CONCLUSION

This work demonstrated that the use of artificial neu-
ral networks in modeling non-linear data in EDXRF is

a very useful alternative. The relative standard errors of
prediction (SEP), when compared with univariate linear
methods, was lowered by 35% for lead and 100% for sul-
fur. In addition, the computational time spent to train the
network, owing to the use of the Levenberg–Marquardt
algorithm for weight correction (about 2 min), was of
the same order of magnitude as those with the other
methods.
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