Kinetics and Equilibrium Constants of Some Pentacyanoferrate(II) Complexes of Nitrogen and Sulfur Containing Heterocycles

YAKUP BARAN,1 AHMET ÜLGEN2

¹Karaelmas University, Art and Science Faculty, Department of Chemistry, 67100 Zonguldak, Turkey ²Erciyes University, Art and Science Faculty, Department of Chemistry, Kayseri, Turkey

Received 23 January 1997; accepted 15 July 1997

ABSTRACT: The kinetics of the substitution reactions of Fe(CN)₅H₂O³⁻ ion with a series of nitrogen and sulfur containing heterocycles were studied in aqueous media. In the presence of excess ligand, varied over a large range of concentrations, second-order rate constants were calculated at $\mu = 0.100$ M NaClO₄. Activation parameters for the formation reactions were found, ΔH^* and ΔS^* , 28 \pm 6 kJ/mol and 135 \pm 20 J/mol, respectively. The results are interpreted as being consistent with dissociative, SN₁ mechanism. The kinetics of formation and dissociation were studied by stopped-flow technique at several temperatures. An investigation of the kinetics of exchange of coordinated heterocycles for 1,3,5-triazine, yielded rate saturation that is typical of a limiting SN₁ mechanism. Activation parameters of the limiting first-order specific rate of dissociations were found with ΔH^* and ΔS^* 53 \pm 2 kJ/mol and 105 \pm 5 J/mol, respectively. From the specific rates of formation and dissociation reactions the equilibrium constants were calculated. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30 :415–418, 1998

INTRODUCTION

The ligand substitution reactions of pentacyanoferrate(II) complexes, $Fe(CN)_5L^{3-}$, has been the subject of considerable interest recently [1–5]. An extensive series of complexes have been synthesized from $Fe(CN)_5H_2O^{3-}$ with N, O, and S donor ligands. These complexes exhibit well-defined metal to ligand charge-transfer (MLCT) absorption, due to electron transfer from the **d** orbital of iron(II) to π^* orbitals of the heterocycles [6,7]. It has been demonstrated that the complexation reactions of Fe(CN)₅H₂O³⁻ with a variety of ligands L and the dissociation reactions of Fe(CN)₅L³⁻, in the presence of excess triazine, follow a dissociative mechanism. The interest in the reactions of heterocycles with Fe(CN)₅H₂O³⁻ ion is mainly associated with the fact that this ion typically coordinates with only one additional ligand and can be used as a probe for the binding properties of several functional groups. Fe(CN)₅H₂O³⁻ easily looses water and forms stable complexes with heterocyclic ligands.

Correspondence to: Y. Baran

^{© 1998} John Wiley & Sons, Inc.

CCC 0538-8066/98/060415-04

In this article we report the kinetics of formation and dissociation, spectral properties, and equilibrium constants of pentacyanoferrate(II) complexes of 1,3,5triazine(tri), isoxazole (isox), pyridinecarboni-1,2-bis(4-pyritrile(pyCN), indoline(ind). dyl)etan(bpe), 3-mercapto-1,2,4-triazole(mtr), 2-tiyazoline-2-thiol(tt), picoline(pcl), and pyrazine(pz) in aqueous solution. The complete dissociation of the ligand from the metal center can be accomplished by the addition of an excess of a strongly coordinating ligand such as 1,3,5-triazine. We have extended the preceding study to examine the kinetic properties of some heterocycle complexes of pentacyanoferrate(II).

EXPERIMENTAL METHOD

Materials

 $Na_2[Fe(CN)_5NO] \cdot 3H_2O$, $NaClO_4$, and all the heterocyclic compounds were supplied from Merck. Some of them were recrystallized and purified before use. The salt $Na_3[Fe(CN)_5NH_3] \cdot 3H_2O$ was prepared from $Na_2[Fe(CN)_5NO] \cdot 3H_2O$ following the conventional procedure [8] and recrystallized several times from concentrated ammonia.

Kinetic Measurements

Kinetic measurements were made by using both stopped-flow (High-Tech, SF-11) and Baush-Lomb spectronic 2000 spectrophotometer, modified with a cell block thermostated to within ± 0.1 °C by means of an external water bath. Complex formation reactions were followed by monitoring at λ_{MLCT} of the Fe(CN)₅L³⁻ complex. The ligand dissociation reactions were followed by monitoring at λ_{MLCT} of the Fe(CN)₅L³⁻ reactant or Fe(CN)₅tri³⁻ product species [9]. Pseudo-first-order conditions of excess ligand concentrations (at least 10 fold) were employed and the reactions were monitored for 3-4 half lives. The dependence of the rate of formation of Fe(CN)₅tri³⁻ on the tri concentration gave saturation behavior. This rate of saturation behavior was established for each dissociation reaction at the beginning of each kinetic run then the kinetics of dissociation reactions were studied. Infinity absorbance readings were recorded after 8 half-lives. First-order rate constants were determined from the least-squares plot of $\ln (A_{\infty} - A_{t})$ or $\ln (A_t - A_{\infty})$ against time. k_{obs} values given in this work are the mean values of three measurements. Ionic strength of the solution was kept constant with added NaClO₄ ($\mu = 0.100$ M). All the ligands used were neutral and pH change was not observed during kinetic runs, therefore no buffer solution was needed during the kinetic runs.

RESULTS AND DISCUSSION

Rate Studies

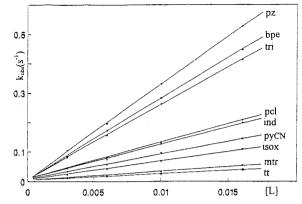
The rates of formation of the heterocycle-substituted pentacyanoferrate(II) were measured spectrophotometrically by stopped-flow technique at wavelengths corresponding to λ_{MLCT} of the complexes. The aquapentacyanoferrate(II) ion, Fe(CN)₅H₂O³⁻, may be generated in solution by the aquation of Fe(CN)₅NH₃³⁻ ion. The pale yellow Fe(CN)₅H₂O³⁻ ion has an absorption maximum at 442 nm with $\epsilon =$ $3100 \text{ cm}^{-1}\text{M}^{-1}$. At higher concentrations > 10^{-4} M, Fe(CN)₅H₂O³⁻ ion is observed to undergo a slow dimerization to yield $Fe_2(CN)_{10}^{6-}$ [10,11]. 10⁻⁴ M solution of pentacyanoferrate(II) gave welldefined and reproducible first-order kinetic plots, linear over at least 3 half-lives. From the slopes of these plots we have calculated the pseudo-first-order rate constants at several ligand concentrations. Each second-order rate constant reported in the result was obtained as the slope of a plot of k_{obs} vs. [L] at four or more ligand concentrations. Temperature dependence of the rate constants of the formation reactions was studied in the range of 15.0-35.0°C. The kinetics of ligand exchange in Fe(CN)₅L³⁻ by 1,3,5-triazine shows typical rate saturation curves expected for processes where the loss of a coordinated ligand completely determines the rate of substitution. We have calculated the equilibrium constants, K, from the limiting rates of the loss of coordinated heterocyles measured, (k_d) and from the rate of formation, (k_f) of the same complexes with respect to Fe(CN)₅H₂O³⁻ and the free ligand using equation $K = k_f / k_d$.

UV-Visible Spectrum

The addition of an excess of a ligand to a dilute solution of Fe(CN)₅H₂O³⁻ ion results in a shift in λ_{MLCT} in the UV-Visible spectrum, ascribed to the formation of a complex, Fe(CN)₅L³⁻. The absorption in the visible region is assigned to a metal to ligand charge transfer transition. An additional band in the UV region is assigned as an inter ligand π - π * transition, centered on coordinated ligand. The values of λ_{MLCT} and log ϵ for a series of these complexes where L specified are listed in Table I. The Uv-vis absorption spectra of the Fe(CN)₅L³⁻ complexes (L:Nitrogen donor ligands) are similar to those of corresponding complexes of ammonia, indicating coordination through

Ligand	$\lambda_{ m MLCT}$	$\log \varepsilon$
bpe	366	3.55
pz	458	3.49
tri	449	3.38
pcl	361	3.49
ind	315	3.24
pyCN	485	3.78
isox	329	3.42
mtr	693	3.37
tt	375	3.51

 Table I
 MLCT Absorption of Fe(CN)₅L³⁻ Complexes


nitrogen atom, except **mtr. Mtr** is bound to metal center through sulphur donor atom therefore MLCT band shifted to lower energy. For Fe(CN)₅mtr³⁻ complex M(d π) – S(d π) back bonding is possible and this bond is observed at low energy region [12–15].

Kinetics of Formation

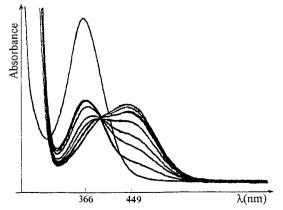
The rate of formation of the Fe(CN)₅L³⁻ with the heterocyclic ligands was measured spectrophotometrically by the stopped-flow technique at λ_{MLCT} . The concentration of Fe(CN)₅H₂O³⁻ was 10⁻⁴ M and the concentration of ligands varied in the range of 0.001-0.016 M ensuring a substantial excess of ligand. The second-order rate constants and activation parameters for the complex formation reactions studied are presented in Table II. A plot of k_{obs} vs ligand gave a straight line which passes through the origin Figure 1. This indicates that there is no significant dissociation. A relative invariance among the specific rate of attack of a number of entering ligands upon a given aqueous Fe(CN)₅H₂O³⁻ is considered as indicative of a common SN_1 mechanism [15,16]. The positive activation entropies, ΔS^* , fall into a range that is usually interpreted as indicating a dissociative pathway but pentacoordinate intermediate of different configura-

Table IIRate and Activation Parameters for theFormation Reactions of $Fe(CN)_5L^{3-}$ Complexes inAqueous Media

Ligand	$k_f(M^{-1} s^{-1}) 25.0^{\circ}C$	$\Delta H^*(\text{kJ/mol})$	$\Delta S^*(J/mol)$
pz	33.5 ± 0.4	31	121
bpe	27.9 ± 0.3	29	102
tri	27.2 ± 0.3	28	121
pcl	12.4 ± 0.2	27	154
ind	12.2 ± 0.1	24	142
pyCN	9.1 ± 0.1	27	137
isox	6.8 ± 0.2	31	152
mtr	3.0 ± 0.1	22	155
tt	2.9 ± 0.1	34	123

Figure 1 Dependance of k_{obs} on ligand concentrations for the complex formation reactions of Fe(CN)₅L³⁻ at 25°C, $\mu = 0.100$ M NaClO₄.

tions are involved. For octahedral complexes, dissociative pathways involving trigonal-bipyramidal intermediate give positive ΔS^* while square-pyramidal intermediates give more negative values [17,18]. The rate law is,


$$\frac{d[\operatorname{Fe}(\operatorname{CN})_5 \operatorname{L}^{3-}]}{dt} = k_f [\operatorname{Fe}(\operatorname{CN})_5 \operatorname{H}_2 \operatorname{O}^{3-}] [L]$$

From the variation of k_f with temperature, the activation parameters were calculated.

Kinetics of Ligand Exchange

Ligand exchange reactions given below were studied in order to determine the rate of dissociation of $Fe(CN)_5bpe^{3-}$ complexes.

$$Fe(CN)_5bpe^{3-} + ti \leftrightarrow Fe(CN)_5tri^{3-} + bpe$$

Figure 2 Variation of UV-Visible spectrum of the $Fe(CN)_{s}bpe^{3-}$ with 1,3,5-triazine.

Ligand	$k_d(s^{-1})10^4 \ 25.0^{\circ}C$	$\Delta H^*(\mathrm{kJ/mol})$	$\Delta S^*(J/mol)$	$K (M^{-1}) 10^{-4}$
bpe	1.42 ± 0.02	51.4	118	19.65 ± 0.04
pcl	1.50 ± 0.03	52.6	109	8.27 ± 0.03
pyCN	1.86 ± 0.02	52.2	111	4.89 ± 0.02
isox	2.06 ± 0.01	54.3	103	3.30 ± 0.02
mtr	4.63 ± 0.02	53.7	117	0.65 ± 0.01
tt	4.94 ± 0.01	54.8	103	0.59 ± 0.01

Table III Rate, Activation Parameters, and Equilibrium Constants for Ligand Substitution of L by 1,3,5-Triazine in $[Fe(CN)_5 L]^{3-}$ ($\mu = 0.100 \text{ M}$)

The rates of ligand exchange were measured as a function of triazine concentration. Reactions were monitored by following the appearance of the product λ_{MLCT} band or disappearance of the reactant, Fe(CN)₅bpe³⁻, λ_{MLCT} band. The reactions of Fe(CN)₅bpe³⁻ in the presence of an excess of tri resulted in a first-order formation of Fe(CN)₅tri³⁻ or loss of Fe(CN)₅bpe³⁻ (Fig. 2). The dissociation rate constants, k_d , and the corresponding activation parameters for the complexes are presented in Table III. Dissociative mechanism, SN₁, of ligand substitution is proposed for the exchange of the L and triazine in the ligand-pentacyanoferrate(II) complexes, on the basis of the saturation of k_{obs} at high concentration of triazine, the dependence of k_d on the nature of L, and the lack of a dependence of k_d on the nature of triazine.

$$Fe(CN)_{5}L^{3-} + H_{2}O \xleftarrow[k_{-d}]{k_{-d}} Fe(CN)_{5}H_{2}O^{3-} + L$$
$$Fe(CN)_{5}H_{2}O^{3-} + tri \xleftarrow[k_{-2}]{k_{-2}} Fe(CN)_{5}tri^{3-} + H_{2}O$$

By steady-state approximation, The observed rate constants may be expressed as,

$$k_{\rm obs} = \frac{k_d k_2 [\rm tri] + k_{-2} k_{-d} [\rm L]}{k_2 [\rm tri] + k_{-d} [\rm L]}$$

As the concentration of tri is increased with [L] held constant, k_{obs} will increase until the condition of k_2 [tri] $\gg k_{-d}$ [L] is met. At this point, k_{obs} will approach to k_d , where k_d is the rate of dissociation of [L] from the Fe(CN)₅L³⁻.

Equilibrium Constants

The calculated values of *K* decrease slightly on moving down the series of complexes in Table III. This decrease reflects the relative independence on ligand properties of both k_d and k_f . Increase in k_d on moving down is accompanied by a decrease in the ligand's π acceptor capacities [19] and is consistent with a decrease in stabilization of the complexes by $d\pi$ -p π^* backbonding. Backbonding caused by σ donation from cyanide ligands to iron(II) in Fe(CN)₅H₂O³⁻ ion should lead to an accumulation of negative charge on the metal that is probably removed by backbonding. This would weaken the Fe—OH₂ bond, prompting SN₁ mechanism. Observed ordering of k_d and K values is caused by backbonding capabilities of ligands.

BIBLIOGRAPHY

- 1. N. E. Katz, M. A. Blesa, and J. A. Olabe, *Inorg. Chim Acta.*, **27**, 65 (1978).
- 2. B. Sieucka, Prog. React. Kinet, 15, 175, (1989).
- J. M. Malin, D. A. Ryan and T. V. Halloran. J. Am. Chem. Soc. 100, 2097, (1978).
- 4. G. Stochel, Coord. Chem. Rev, 114, 269, (1992).
- 5. D. H. Macartney and A. McAuley, *Inorg. Chem.* 20, 748, (1981).
- D. H. Macartney and L. J. Warrack, *Can. J. Chem*, 1774, (1989)
- N. V. Hrepic and J. M. Malin, *Inorg. Chem*, 18, 2, 409, (1979).
- G. Brauer, Handbook of Preparative Inorganic Chemistry Academic Press, 1965, p. 1511, Vol. 2, 2nd ed.
- A. P. Lyon and D. H. Macartney, *Inorg. Chem*, **36**, 729, (1997).
- K. B. Reddy and R. van Eldik, *Inorg. Chem*, **30**, 596, (1991).
- P. Ford, R. Gaunder and H. Taube, J. Am. Chem. Soc. 90, 1117, (1968).
- H. E. Toma, J. Malin and E. Giesbrecht, *Inorg. Chem.* 12, 2084, (1973).
- 13. D. H. Macartney and A. McAuley, J. Chem. Soc, Dalton Trans, 1780, (1981).
- H. E. Toma and M. S. Takasugi, *Polyhedron*, 1, 429, (1982).
- H. E. Toma, A. A. Batista and H. B. Gray, *J. Am. Chem. Soc.* **104**, 7509, (1982).
- G. Stochol, J. Chatlas, P. Martinez and R. van Eldik, *Inorg. Chem.* **31**, 5480, (1992).
- 17. M. L. Tobe, Inorg. Chem, 7, 1260, (1968).
- 18. C. Ford, Inorg. Chem, 11, 679, (1972).
- H. E. Toma and J. M. Malin, *Inorg. Chem*, **12**, 1039, (1973).