Characterization of New PPAR γ Agonists: Analysis of Telmisartan's Structural Components

Matthias Goebel, ${ }^{[a]}$ Markus Clemenz, ${ }^{[c]}$ Bart Staels, ${ }^{[b]}$ Thomas Unger, ${ }^{[c]}$ Ulrich Kintscher, ${ }^{[c]}$ and Ronald Gust ${ }^{*[a]}$

Abstract

In addition to a proven efficacy in lowering blood pressure, the AT1 receptor blocker telmisartan has recently been shown to exert pleiotropic effects as a partial agonist of the nuclear peroxisome proliferator-activated receptor gamma (PPAR γ). Based on these findings and an excellent side-effect profile, telmisartan may serve as a lead structure for the development of new PPAR γ ligands. Therefore, we analyzed the structural components of telmisartan to identify those necessary for PPAR γ activation. Synthesized compounds were tested in a differentiation assay using 3T3-L1 preadipocytes and a luciferase assay with COS-7 cells transiently transfected with pGal4-hPPAR $D E F, p G a l 5-T K-p G L 3$ and pRL-CMV. The data obtained in this structure-activity relationship (SAR) study provide the basis for the development of

new PPAR γ ligands, which could lead to active compounds with a distinct, beneficial pharmacological profile compared with the existing full agonists. The basic 1-(biphenyl-4-ylmethyl)-1H-benzimidazole scaffold of telmisartan was identified as an essential moiety with either a carboxylic acid or tetrazole group at the C-2 position of the biphenyl. For maximum potency and activity, the alkyl chain in position 2 requires a minimum length of at least two C atoms (ethyl group), while the methyl group at position 4 of the benzimidazole core seems to contribute to partial activity. An additional benzimidazole at position 6 appears to be a further determinant of potency. Similar conclusions can be drawn for the methyl group in position 1.

Part I
relevance of the Part II benzimidazole core relevance of position 2

Part III relevance of the biphenyl moiety
Part IV

position 6
Figure 1. Telmisartan divided into four parts for investigating their relevance of PPAR γ activation.

Figure 2, including some derivatives previously described by Narr and co-workers. ${ }^{[12]}$

Part I included 2'-propyl-1H, $3^{\prime} H$ - $2,5^{\prime}$-bibenzo[d]imidazole (2) and the biphenyl-2-carboxylic acid (BPA). The benzimidazole
[a] M. Goebel, Prof. Dr. R. Gust
Institute of Pharmacy, Freie Universität of Berlin
Koenigin-Luise Strasse $2+4$, 14195 Berlin (Germany)
Fax: (+49) 30-838-56906
E-mail: rgust@zedat.fu-berlin.de
[b] Prof. Dr. B. Staels
INSERM U545, Institut Pasteur de Lille
Faculté de Pharmacie et Faculté de Médecine Université de Lille 2, 59000 Lille (France)
[c] M. Clemenz, Prof. Dr. T. Unger, Prof. Dr. U. Kintscher Center for Cardiovascular Research (CCR), Institute of Pharmacology Charité-Universitaetsmedizin Berlin Hessische Strasse 3-4, 10115 Berlin (Germany)

Supporting information for this article is av http://dx.doi.org/10.1002/cmdc.200800285.

Part I:
core benzimidazole group

2

BPA

Part II:
position 2 group

13

14

15

Part III: position 1 group

17

18

19

Part IV:
position $5+6$ group

21-5: 5-regioisomer
21-6: 6-regioisomer

23-5: 5-regioisomer
23-6: 6-regioisomer

24-5: 5-regioisomer
24-6: 6-regioisomer

Figure 2. Overview and arrangement in groups of synthesized and tested compounds.
core was assembled stepwise in the synthesis of BPA derivatives 4, 6 and 9 to show its relevance for PPAR γ activation. In part II, we focused our attention on the influence of the alkyl chain at position 2 of the benzimidazole core. The chain length was varied from $\mathrm{R}=\mathrm{H}$ to $\mathrm{R}=n \mathrm{Pr}$ (compounds 12-15). The compounds of part III provided information on the biphenyl moiety and the attached carboxyl group. The COOH group was replaced by a proton (compound 17) or a bioisosteric tetrazole moiety (compound 16), while a C_{7} chain in compound 18 is able to mimic the biphenyl structure. Replacement of the biphenyl with a phenyl (compound 19) provided data on the relevance of the orientation and distance of the carboxyl function to the benzimidazole. Part IV included compounds 21-5/6, 23-5/6 and 24-5/6 probing the importance of the second benzimidazole in position 6 of telmisartan as well as the N-1 methyl group.

Chemistry

After esterification of 3,4-diaminobenzoic acid with ethanol/ $\mathrm{H}_{2} \mathrm{SO}_{4}$, the free amino groups were acylated with butyryl chloride in anhydrous THF at room temperature, followed by cyclocondensation in toluene and p-toluenesulfonic acid to give compound 1 (Scheme 1). ${ }^{[13]}$ Ester cleavage was carried out in aq $\mathrm{NaOH}(10 \%)$ and methanol (1:1). The cyclocondensation of the free carboxyl group with 1,2-benzenediamine in polyphosphoric acid at $150^{\circ} \mathrm{C}$ yielded compound 2. ${ }^{[14]}$

Scheme 1. Reagents and Conditions: a) EtOH, $\mathrm{H}_{2} \mathrm{SO}_{4}$, reflux; b) THF, butyryl chloride, RT ; c) toluene, $\mathrm{pTs} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$, reflux; d) MeOH , aq $\mathrm{NaOH}(10 \%)$, reflux; e) 1,2-benzenediamine, polyphosphoric acid, $150^{\circ} \mathrm{C}$.

The intermediates 3, 5 and 8 were generated by reaction of 4'-(bromomethyl)-2-biphenylcarbonitrile with dimethylamine, 2-propylimidazole or compound 7 in anhydrous DMF and NaH . Compound 7 was prepared in advance by cyclocondensation of 3-methyl-1,2-benzenediamine with ethyl butanimidoate in ethanol. Hydrolysis of the nitrile group with KOH in ethylene glycol yielded 4, $6^{[15]}$ and 9 (Scheme 2).

Scheme 3 shows the synthetic route for compounds 12-19. The 2-substituted benzimidazoles 10 a-d were prepared by dissolving 1,2-benzenediamine in the appropriate ortho-ester and treating the solution dropwise with concentrated HCl to form the ring. Compounds $11 \mathrm{a}-\mathrm{d}$ and $17-19$ were then obtained by N -alkylation with the respective alkyl halogenide using a protocol analogous to the method described for the preparation of

Scheme 3. Reagents and Conditions: a) $\left.\mathrm{R}^{1} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{3}, \mathrm{HCl}, \mathrm{RT} ; \mathrm{b}_{1}\right) \mathrm{NaH}, 4^{\prime}$-(bromomethyl)-2-biphenylcarbonitrile, DMF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{RT} ; \mathrm{b}_{2}$) $\mathrm{NaH}, 4$-(bromomethyl)biphenyl, DMF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$; b_{3}) NaH, 8 -bromooctanoic acid, DMF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$; b_{4}) $\mathrm{NaH}, 4$-(bromomethyl)benzonitrile, DMF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt} ; \mathrm{c}_{1}$) ethylene glycol, $\left.\mathrm{KOH}, 185^{\circ} \mathrm{C} ; \mathrm{C}_{2}\right) \mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{DMF}$, $140^{\circ} \mathrm{C}$.
compounds 3,5 and 8. Hydrolysis of nitriles 11 a-d finally resulted in compounds 12-15. Compound 11 d was heated with NaN_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ in anhydrous DMF to $140^{\circ} \mathrm{C}$ for 24 h to transform the nitrile into a tetrazole (16).
The isomers 20-5/6 were prepared by N -alkylation of compound 1 with 4^{\prime}-(bromomethyl)-2-biphenylcarbonitrile and subsequent ester cleavage (Scheme 4). Treatment of the carbonitrile with KOH in ethylene glycol at $185^{\circ} \mathrm{C}$ provided 21-5/ 6. The synthesis of $22-5 / 6$ started with the transformation of $20-5 / 6$ into the acid chloride by using SOCl_{2} in THF. The reaction mixture was then added directly to a solution of 1,2-ben-
zenediamine in THF to form the acylated diamine allowing the formation of a benzimidazole by cyclocondensation. Saponification of 22-5/6 gave compounds 23-5/6, which were reacted with Mel to give the N-methyl derivatives 24-5/6. ${ }^{[14]}$

The structural assignment of 21-5/6, 23-5/6 and 24-5/6 (to either the 5 or 6 regioisomer) and 9 (to the 4-methyl isomer) was performed by differential ${ }^{1}$ H NMR Nuclear Overhauser Effect experiments (NOE-Diff) based on the saturation transfer from the benzylic methylene group to the C-7 proton ($\mathrm{H}-7$) at the central benzimidazole. The observed NOE $\left(\mathrm{CH}_{2}, \mathrm{H}-7\right.$; figure S2, Supporting Information) demonstrated unequivocally the positioning of the methyl group in compound 9 at C-4. Irradiation of the methylene protons in compounds 21-5/6, 23-5/6 and 24-5/6 reduced the splitting of H-7 (5-isomer, doublet; 6-isomer, singlet; see figures S3-S8, Supporting Information).

Results and Discussion

In vitro SAR studies

Compounds were evaluated for PPAR γ activation in vitro. PPAR γ is known as the "master regulator" of adipocyte differentiation, and its activity closely correlates with the degree of differentiation analyzed by Oil Red O staining. Therefore, 3T3-L1 pre-/adipocyte differentiation was chosen as an established model for the assessment of cellular PPAR γ activation screening (see Figure 3 and Figure 4, concentrations 1 and $10 \mu \mathrm{~m}$ of each compound were used; DMSO as vehicle (V); pioglitazone (P) and telmisartan (T) as positive controls).
No significant adipocyte differentiation was observed for BPA or compounds 2, 4 and 6 . Compound 9 with the 4 -methyl- 1 H -benzimidazole moiety induced adipocyte differentiation at $10 \mu \mathrm{~m}$. Differentiation was also induced by compounds 12-15, dependent on the C-2 alkyl chain. These findings demonstrated that a 1 -(biphenyl-4-ylmethyl)-1 H -benzimidazole structure is required for PPAR γ activation. Comparison

Scheme 4. Reagents and Conditions: a) $\mathrm{NaH}, 4^{\prime}$-(bromomethyl)-2-biphenylcarbonitrile, $\mathrm{DMF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT} ;$ b) MeOH, aq $\left.\mathrm{NaOH}(10 \%) ; \mathrm{c}_{1}\right) \mathrm{KOH}$, ethylene glycol, $\mathrm{H}_{2} \mathrm{O}$, $185^{\circ} \mathrm{C}$; C_{2}) THF, $\mathrm{SOCl}_{2}, 60^{\circ}$; d) 1,2-benzenediamine, $\mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$; e) toluene, $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}, 110^{\circ} \mathrm{C}$; f) $\mathrm{NaH}, \mathrm{Mel}, \mathrm{DMF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$.

Figure 3. Adipocyte differentiation assay with 3T3-L1 cells in 24 -well plates after 9 days differentiation \pm the indicated compounds at 1 and $10 \mu \mathrm{~m}$. DMSO as vehicle (V), pioglitazone (P) and telmisartan (T) as positive controls. Cells were stained with Oil Red O and one representative photograph out of three independent experiments is shown.
of the effects of compounds 15 and 9 indicated a reduction in activity and partial PPAR γ activity due to the presence of the 4 -methyl group in this class of compounds. Shortening of the propyl chain at C-2 of compound 15 to ethyl (compound 14), methyl (compound 13) and proton (compound 12) clearly underlines the relevance of the ethyl group as a minimum requirement for PPAR γ activation.

Activation of PPAR γ was diminished by replacing the biphenyl moiety of compound 15 by an octanoic acid (compound 18), despite the possible orientation of the carboxyl group similar to compound 15. Activation was completely abolished by replacement of the biphenyl with the phenyl ring (compound 19). The importance of the biphenyl structure is consistent with previous data obtained by testing different

Figure 4. Compound screening in an adipocyte differentiation assay with 3T3-L1 cells in 24 -well plates after 9 days differentiation \pm the indicated compounds at $1 \mu \mathrm{M}(\square)$ and $10 \mu \mathrm{M}(\square)$. DMSO as vehicle (V), pioglitazone (P) and telmisartan (T) as positive controls. Cells were stained with Oil Red O and extracted with isopropanol ($80 \% \mathrm{v} / \mathrm{v}$). TG accumulation was measured by absorption of the dye at 515 nm . Values were compared to vehicle induction and are the means (\pm SD) of threefold determination in a single experiment.

ARBs for PPAR γ activation. ${ }^{[9,10]}$ Results from part III also provide information about the function of the carboxylic acid group. Bioisosteric replacement with the tetrazole moiety did not change PPAR γ-dependent differentiation (compound 15 vs. 16). Interestingly, decarboxylation (compound 17) led to only a marginally reduced induction of cell differentiation. This means that the biphenyl structure plays a major role in PPAR γ activation. Insertion of a carboxyl group at position 5 (regioisomer 21-5) or 6 (regioisomer 21-6) led to a loss of differentiation.
The insertion of a benzimidazole substituent at the benzimidazole core almost completely stopped differentiation (compound 15 vs. 23-5 and 23-6). Low adipocyte differentiation was observed only for compound 23-6 at a concentration of $10 \mu \mathrm{~m}$. Introduction of a 1-methyl group at the benzimidazole2 -yl residue increased the activity. Isomers 24-5 and 24-6 exhibited comparable activity compared with telmisartan at $1 \mu \mathrm{~m}$ and somewhat increased activity at a tenfold higher concentration. Again, the activity lowering effect of the 4-methyl group in telmisartan was documented. This important finding will be investigated in detail in subsequent SAR studies.

All test compounds at both concentrations (1 and $10 \mu \mathrm{~m}$) were also investigated in a luciferase transactivation assay using COS-7 cells transiently transfected with pGal4-hPPAR γ DEF and pGal5-Tk-pGL3 (Figure 5). This experiment was used as a screening assay to select potent compounds for further detailed analysis. The threshold for the selection was defined as $>25 \%$ activation at $10 \mu \mathrm{~m}$. Pioglitazone, as a full PPAR γ agonist, was used as a positive control and its activation at $10 \mu \mathrm{~m}$ was defined as 100%.
The luciferase activation assay results correlated with those of the differentiation assay. Compounds 9, 14-18, 23-6, 24-5 and 24-6 showed activation comparable to telmisartan and were selected for further analysis. For full comparison of position 5 to 6 , compound 23-5 was included also. The EC_{50} values and the maximum activation ($\mathrm{A}_{\text {max }} \%$) were determined for these compounds (Table 1).

Telmisartan $\quad\left(E C_{50}=5.1 \mu \mathrm{M}, \quad \mathrm{A}_{\max }=56 \%\right.$), compound 15 $\left(E C_{50}=4.1 \mu \mathrm{M}, \mathrm{A}_{\text {max }}=60 \%\right.$) and compound 16 ($E C_{50}=4.8 \mu \mathrm{~m}$, $A_{\max }=61 \%$) were comparably active (Figure 6b). Shortening of the C-2-propyl group to ethyl (compound 14) reduced the ac-

Figure 5. Compound screening in a luciferase transactivation assay. COS-7 cells were transiently transfected with the pGal4-hPPAR $\gamma \mathrm{DEF}$ and pGal5-Tk-pGL3 reporter followed by stimulation with the compounds as indicated. Firefly luciferase activity was measured after 36 h and normalized with activity of cotransfected renilla luciferase. Graph shows activation (\%) of the luciferase gene by pioglitazone ($\mathrm{P}, 10 \mu \mathrm{~m}$ was defined as 100%), telmisartan (T), biphenyl-2carboxylic acid (BPA) and the synthesized compounds $2,4,6,9,12-19,21-5 / 6,23-5 / 6$ and $24-5 / 6$ at $1 \mu \mathrm{M}$ (\square) and $10 \mu \mathrm{M}$ (\square). Values expressed are the means (\pm SD) of threefold determination in a single experiment.

Cmpd	$\mathrm{EC}_{50}[\mu \mathrm{~m}]^{[\mathrm{a}]}$	$\mathrm{A}_{\text {max }}[\%]^{[\mathrm{a}]}$
pioglitazone	0.3 ± 0.1	100
telmisartan	5.1 ± 0.2	56 ± 7
9	7.5 ± 2.0	56 ± 4
14	8.3 ± 2.2	48 ± 3
15	4.1 ± 0.6	60 ± 3
16	4.8 ± 1.3	61 ± 6
18	8.2 ± 2.0	46 ± 4
23-5	21.3 ± 7.6	24 ± 6
23-6	10.1 ± 2.5	54 ± 9
24-5	4.8 ± 3.7	58 ± 10
24-6	3.3 ± 1.0	71 ± 4

[a] Data values represent the mean \pm SD of three independent experiments.

Figure 6. Compounds tested in luciferase activation assay using COS-7 cells transiently transfected with pGal4-hPPAR γ DEF and pGal5-Tk-pGL3. Data points represent the mean (\pm SD) of threefold determination in a single representative experiment. Activation (\%) of the luciferase gene in COS-7 cells by pioglitazone (not shown, $10 \mu \mathrm{~m}$, defined as 100%), telmisartan (O), and the synthesized compounds. a) compounds $9(\nabla), 14(\square)$ and 15 (*); b) compounds $15(*), 16(\square), 17(\square)$ and $18(\nabla)$; c) compounds 23-5 (23-6 (\square), 24-5 (*) and 24-6 (∇).
activity when \geq ethyl. This might be the consequence of enhanced lipophilic contacts in the ligand-binding domain (LBD).

The $2-\mathrm{COOH}$ located on the biphenyl system can be exchanged by a bioisosteric tetrazole without change in receptor activation. Interestingly, decarboxylation did not cause the expected loss of activity and so we assume that H bonds between the COOH and amino acids in the binding cavity do not play an essential role.

It is postulated that telmisartan binds in an angular conformation in the LBD to render a specific attachment of the 6benzimidazole moiety. This would be in accordance with the different effects observed with compounds 23-5 and 23-6. However, introduction of an N-methyl group (compound 24-5) drastically increased the activation of compound 23-5 and to some extent that of compound 23-6 also (see 24-6). Furthermore, the results from compounds 9, 15 and 24-6 indicated that a C-4 methyl group, as present in telmisartan, reduced the hormonal profile to that of a partial agonist. However, this finding has to be confirmed in a further SAR study.

The telmisartan moieties important for PPAR γ activation activity are depicted in Figure 7. These initial SAR results allow an assessment of the PPAR γ activating properties of different ARBs shown in Figure 8. However, to get a complete overview of PPAR activation it will be necessary to evaluate the importance of PPAR subtype (α and δ) activation, too.

Figure 7. Overview of important moieties of telmisartan for PPAR γ activation. The minimum core structure required for activation is highlighted (-----).

From our point of view, these findings provide the basis for future research regarding the further elucidation of key structural features of telmisartan and their impact on PPAR γ activity. They could also be the origin for the development of new PPAR γ ligands with a distinct pharmacological profile compared to existing full agonists, useful in treating metabolic diseases such as insulin resistance and diabetes.

Experimental Section

Chemistry

All reagents and solvents were purchased from Acros Organics, Sigma-Aldrich, Alfa Aesar or Merck. All reactions were monitored by TLC, performed on silica gel plates $60 \mathrm{~F}_{254}$ (Merck, Darmstadt, Germany). Visualization on TLC was achieved by UV light. Column chromatography was performed with Merck silica gel 60H, grain

Valsartan
not active

Eprosartan
not active

Losartan
marginally active

Olmesartan
not active

Irbesartan
weakly active

Candesartan
marginally active

Figure 8. Structural comparisons of clinically used ARBs regarding their PPAR γ activating properties. ${ }^{[10,16,17]}$
size < $0.063 \mathrm{~mm}, 230$ mesh ASTM (Darmstadt, Germany). Melting points were measure using a B 545 Büchi (Flawil/Schweiz) capillary melting point apparatus. ${ }^{1} \mathrm{H}$ NMR experiments were carried out on an Avance DPX-400 spectrometer (Bruker, Karlsruhe, Germany) at 400 MHz using TMS as an internal standard. Elemental analyses were conducted by the micro laboratory of the Freie Universität of Berlin. EI-MS spectra were recorded on a CH-7A-Varian MAT, 70 eV (Melbourne, Australia). Microplate Reader FLASHScan S12 (Analytik Jena AG, Jena/Germany) Microlumat: Victor2 1420 Multilabel Counter (Wallac, Perkin-Elmer, Life sciences, Turku/Finnland).

General procedure for N -alkylation with 4'-(bromomethyl)-2-biphenylcarbonitrile: A stirred solution of the appropriate secondary amine (1 mmol) in anhyd DMF (3 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{NaH}(2 \mathrm{mmol})$. After $\sim 30 \mathrm{~min}$ (or after no more visible evolution of hydrogen) 4'-(bromomethyl)-2-biphenylcarbonitrile (1.1 mmol) was added slowly and stirred at $0^{\circ} \mathrm{C}$ for 1 h before warming to RT and stirring for a further 2-5 h . The reaction mixture was poured into aq $\mathrm{HCl}(1 \mathrm{~mL}, 6 \mathrm{~N})$ with crushed ice $(25 \mathrm{~g})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product was purified by column chromatography with stepwise gradient elution (DCM/MeOH, 99:1, 98:2, 95:5).

General procedure for saponification of carbonitriles: A stirred solution of the respective carbonitrile (1 mmol), $\mathrm{KOH}(5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ and ethylene glycol (4 mL) was heated at $185^{\circ} \mathrm{C}$ for $5-6 \mathrm{~h}$, with additional $\mathrm{H}_{2} \mathrm{O}$ (1 mmol) carefully added hourly. After $5-6 \mathrm{~h}$ the reaction mixture was cooled to $100^{\circ} \mathrm{C}$, and diluted further with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$. The solution was acidified to $\mathrm{pH} 5-6$ with aq $\mathrm{HCl}(6 \mathrm{~N})$ and stirred for 15 min to complete the precipitation. The crude solid was purified by column chromatography with stepwise gradient elution (DCM/MeOH, 95:5, 9:1, 8:2) and recrystallization from MeOH .

Ethyl(2-propyl-1H-benzo[d]imidazole)-6-carboxylate (1): A solution of 3,4-diaminobenzoic acid ($4 \mathrm{~g}, 26.3 \mathrm{mmol}$) in anhyd EtOH (80 mL) and concd $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($1.41 \mathrm{~mL}, 26.3 \mathrm{mmol}$) was heated at reflux for $5-10$ h. The reaction was cooled, poured into aq NaHCO_{3} $(160 \mathrm{~mL}, 5 \%)$ and extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The aqueous phase was maintained at pH 8 to extract the desired ethyl-3,4-diaminobenzoate only. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product ($3.55 \mathrm{~g}, 19.7 \mathrm{mmol}, 75 \%$) was dissolved in THF (30 mL) and treated with butyryl chloride ($4.1 \mathrm{~mL}, 39.4 \mathrm{mmol}$) dropwise. The reaction mixture was stirred for 1 h at RT. The reaction was poured into aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}, 5 \%)$ and extracted with $\mathrm{CHCl}_{3}(3 \times 35 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product (ethyl-3,4-dibutanamidobenzoate, $6.12 \mathrm{~g}, 19.1 \mathrm{mmol}, 97 \%$) was dissolved in a suspension of toluene (190 mL) and $p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(7.27 \mathrm{~g}, 38.2 \mathrm{mmol})$ and refluxed for 3 h . The reaction was worked up as in the previous step and the crude product was purified by column chromatography with stepwise gradient elution (DCM/MeOH, 98:2, 95:5, 9:1) to give the title compound as a colorless solid, 96% ($67 \%, 2$ steps); ${ }^{1} \mathrm{H}$ NMR ([D $\left.{ }_{6}\right]$ DMSO): $\delta=12.53(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.80 (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$); MS (EI, $100^{\circ} \mathrm{C}$): m/z (\%) = $232[\mathrm{M}]^{+`}(39), 217$ (19), 204 (100), 187 (15).

2'-Propyl-1H, $\mathbf{3}^{\prime} \mathbf{H}-2,5^{\prime}$-bibenzo[d]imidazole (2): A solution of compound 1 ($0.5 \mathrm{~g}, 2.15 \mathrm{mmol}$) in aq NaOH (10%) and MeOH (1:1, 9 mL) was refluxed for 2 h . The resulting free acid ($0.4 \mathrm{~g}, 2 \mathrm{mmol}$, 93%) was dissolved in polyphosphoric acid (9 g) at $150^{\circ} \mathrm{C}$ and treated with 1,2-benzenediamine in small portions. After stirring at $150^{\circ} \mathrm{C}$ for 24 h the mixture was allowed to cool and water was added in small portions. The pH was adjusted to pH 9 by the addition of concd NH_{3} to the cooled reaction flask (ice bath). The precipitate was collected and recrystallized from $\mathrm{DCM} / \mathrm{MeOH}$ to give the title compound as colorless crystals (31%); mp: $338-341^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=12.78(\mathrm{~s}, 1 \mathrm{H}), 12.44(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H})$, $8.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82$ (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (El, $250{ }^{\circ} \mathrm{C}$): $m / z(\%)=276[\mathrm{M}]^{+\cdot}(89), 261$ (20), 248 (100). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4}$: C 73.89, H 5.84, N 20.27, found: C 73.59, H 5.63, N 20.07.

4'-[(Dimethylamino)methyl]biphenyl-2-carbonitrile (3): Compound 3 was prepared from dimethylamine hydrochloride (0.15 g , $1.84 \mathrm{mmol})$, $\quad 4^{\prime}$-(bromomethyl)-2-biphenylcarbonitrile (0.54 g , $2 \mathrm{mmol}), \mathrm{NaH}(88 \mathrm{mg}, 3.7 \mathrm{mmol})$ and anhyd DMF (5 mL) following the N -alkylation general procedure. The product was purified by column chromatography with stepwise gradient elution (DCM) $\mathrm{MeOH}, 95: 5,9: 1$) to give compound 3 as a colorless solid (72%); ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.45$ (s, 2H), 2.15 (s, 6H).

4'-[(Dimethylamino)methyl]biphenyl-2-carboxylic acid (4): The compound was prepared from compound 3 ($0.5 \mathrm{~g}, 2.1 \mathrm{mmol}$), KOH $(0.59 \mathrm{~g}, 10.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.038 \mathrm{~mL}, 1 \mathrm{mmol})$ and ethylene glycol $(8 \mathrm{~mL})$ following the general procedure for saponification of carbonitriles to give compound 4 as a colorless solid (20%); mp: 136$140^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H})$, 2.25 (s, 6H); MS (El, $210^{\circ} \mathrm{C}$): m/z (\%) $=255[\mathrm{M}]^{+\cdot}$ (58), 211 (28), 58 (100). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 65.96, \mathrm{H} 6.71, \mathrm{~N} 5.49$, found: C 65.73, H 6.42, N 5.35 .

4'-[(2-Propyl-1 H -imidazole-1-yl)methyl]biphenyl-2-carbonitrile (5): Compound 5 was prepared from 2-propyl-1H-imidazole (0.5 g , $4.5 \mathrm{mmol})$, 4^{\prime}-(bromomethyl)-2-biphenylcarbonitrile (1.35 g , $5 \mathrm{mmol}), \mathrm{NaH}(0.22 \mathrm{~g}, 9 \mathrm{mmol})$ and anhyd DMF (7 mL) following the general procedure for N -alkylation to give compound 5 as a colorless solid (56%); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.94$ (dd, J=7.6, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.57 (d, $J=8.4 \mathrm{~Hz}, 3 \mathrm{H}$), 7.25 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.60 (sextet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).

4'-[(2-Propyl-1 H-imidazole-1-yl)methyl]biphenyl-2-carboxylic

acid (6): The compound was prepared from compound 5 (0.5 g , $1.66 \mathrm{mmol}), \mathrm{KOH}(0.466 \mathrm{~g}, 8.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.03 \mathrm{~mL}, 1.66 \mathrm{mmol})$ and ethylene glycol (6 mL) following the general procedure for saponification of carbonitriles to give compound 6 as a colorless solid (11\%); mp: $214-215^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right)$: $\delta=12.77$ (s, 1 H), 7.71 (dd, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}$, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, J=7.7, 1.1 Hz, 1 H), 7.31 (d, J=8.2 Hz, $2 \mathrm{H}), 7.14(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.60$ (sextet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (EI, $70^{\circ} \mathrm{C}$): m/z (\%) $=320[\mathrm{M}]^{+\cdot}(36), 292$ (32), 211 (100). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 74.98, H 6.29, N 8.74, found: C 74.72, H 6.51, N 8.73.

4-Methyl-2-propyl-1H-benzo[d]imidazole (7): A stirred solution of 3-methyl-1,2-benzenediamine ($0.25 \mathrm{~g}, 2 \mathrm{mmol}$) in anhyd EtOH $(10 \mathrm{~mL})$ was treated with ethyl butanimidoate hydrochloride $(0.38 \mathrm{~g}, 2.5 \mathrm{mmol})$ and refluxed for 3 h . The reaction was cooled, poured into aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}, 5 \%)$ and extracted with $\mathrm{CHCl}_{3}(3 \times$ 50 mL). The product was purified by column chromatography with stepwise gradient elution ($\mathrm{DCM} / \mathrm{MeOH} 95: 5,9: 1$) to give compound 7 as a colorless solid (97%); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=12.04$ $(\mathrm{s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.77$ (sextet, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

4'-[(2-Propyl-4-methyl-1H-benzo[d]imidazole-1-yl)methyl]biphen-yl-2-carbonitrile (8): Compound 8 was prepared from 7 (0.33 g , $1.9 \mathrm{mmol})$, $\quad 4^{\prime}$-(bromomethyl)-2-biphenylcarbonitrile $\quad(0.57 \mathrm{~g}$, $2.1 \mathrm{mmol}), \mathrm{NaH}(0.09 \mathrm{~g}, 3.8 \mathrm{mmol})$ and anhyd DMF (6 mL) following the general procedure for N -alkylation to give the title compound as a colorless solid (86%); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.93$ ($\mathrm{d}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, J=7.2 Hz, 1H), $5.57(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H})$, 1.76 (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

4'-[(2-Propyl-4-methyl-1H-benzo[d]imidazole-1-yl)methyl]biphen-yl-2-carboxylic acid (9): The compound was prepared from 8 $(0.6 \mathrm{~g}, 1.64 \mathrm{mmol}), \mathrm{KOH}(0.46 \mathrm{~g}, 8.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.03 \mathrm{~mL}$, 1.64 mmol) and ethylene glycol (6 mL) following the general procedure for saponification of carbonitriles to give the title compound
as a colorless solid (63%); mp: $279-280^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ([D. $\left.{ }^{6}\right] \mathrm{DMSO}$): $\delta=12.73(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, \mathrm{J}=7.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (td, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=7.7,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97$ (d, J=7.2 Hz, 1 H), $5.51(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.53 (s, 3H), 1.76 (sextet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.96$ (t, J=7.4 Hz, 3H); MS (EI, $150^{\circ} \mathrm{C}$): m/z (\%) $=384[\mathrm{M}]^{+\cdot}$ (83), 356 (100), 355 (70), 211 (97). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \times 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 77.02, \mathrm{H} 6.36, \mathrm{~N} 7.19$, found: C 77.09, H 6.18, N 7.28.

Procedure for the preparation of $10 \mathrm{a}-\mathrm{d}$: A stirred suspension of 1,2-benzenediamine ($0.5 \mathrm{~g}, 4.6 \mathrm{mmol}$) in the respective trimethyl orthoester (18.4 mmol) was treated dropwise with concd HCl at RT until the suspension turned clear and an exothermic reaction started. When the reaction mixture reached pH 8 , aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$, 5%) was added and the reaction mixture was extracted with CHCl_{3} $(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The crude product was purified by column chromatography with DCM/MeOH (95:5).

1H-Benzo[d]imidazole (10a): From 1,2-benzenediamine (0.5 g , $4.6 \mathrm{mmol})$ and trimethyl orthoformate ($2 \mathrm{~mL}, 18.4 \mathrm{mmol}$) to give the title compound as a light-brown solid (95\%); ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=12.42(\mathrm{~s}, 1 \mathrm{H}), 8.2(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=6.75,1 \mathrm{H}), 7.52$ (d, J=6.71, 1 H), 7.25-7.07 (m, 2H); MS (El, $30^{\circ} \mathrm{C}$): m/z (\%) = 118 $[\mathrm{M}]^{+\cdot}(100), 91$ (26), 64 (13).

2-Methyl-1H-benzo[d]imidazole (10b): From 1,2-benzenediamine ($0.5 \mathrm{~g}, 4.6 \mathrm{mmol}$) and trimethyl orthoacetate ($2.3 \mathrm{~mL}, 18.4 \mathrm{mmol}$) to give the title compound as a colorless solid (94\%); ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=12.15(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.18-6.91(\mathrm{~m}, 2 \mathrm{H})$, 2,47 (s, 3H); MS (EI, $30^{\circ} \mathrm{C}$): m/z (\%)=132[M] ${ }^{+\cdot}(100), 131$ (64).

2-Ethyl-1H-benzo[d]imidazole (10c): From 1,2-benzenediamine $(0.5 \mathrm{~g}, 4.6 \mathrm{mmol})$ and trimethyl orthopropionate $(2.6 \mathrm{~mL}$, $18.4 \mathrm{mmol})$ to give the title compound as a colorless solid (98%); ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=12.14(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-6.93$ (m, 2H), $2.82(\mathrm{q}, J=7.6,2 \mathrm{H}), 1.31(\mathrm{t}, J=7.6,3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{El}, 30^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}$ $(\%)=146[M]^{+\cdot}(70), 145(100)$.

2-Propyl-1H-benzo[d]imidazole (10d): From 1,2-benzenediamine ($2 \mathrm{~g}, 18.5 \mathrm{mmol}$) and trimethyl orthobutyrate ($11.8 \mathrm{~mL}, 74 \mathrm{mmol}$) to give the title compound as a colorless solid (95%); ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=12.05(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.13-6.93(\mathrm{~m}, 2 \mathrm{H})$, $2.75(\mathrm{t}, J=7.5,2 \mathrm{H}), 1.77$ (sextet, $J=7.4,2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4,3 \mathrm{H})$; MS (EI, $50^{\circ} \mathrm{C}$): m/z (\%) = $160[\mathrm{M}]^{+\cdot}(29), 145$ (20), 132 (100).

Procedure for the preparation of $11 \mathrm{a}-\mathrm{d}$: The compounds were prepared from compounds 10 a-d following the general procedure for N -alkylation.

4'-[(1H-Benzo[d]imidazole-1-yl)methyl]biphenyl-2-carbonitrile

(11 a): From $10 \mathrm{a}(0.51 \mathrm{~g}, 4.3 \mathrm{mmol})$ and 4'-(bromomethyl)-2-biphenylcarbonitrile ($1.28 \mathrm{~g}, 4.7 \mathrm{mmol}$) to give the title compound as a colorless solid (89%); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=8.48$ (s, 1 H), 7.94 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (dd, $J=7.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.45$ (d, J=8.2 Hz, 2H), 7.23 (m, 2H), 5.61 (s, 2H); MS (EI, $\left.125^{\circ} \mathrm{C}\right): m / z(\%)=309[M]^{+\cdot}(46), 192$ (100).

4'-[(2-Methyl-1H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carbonitrile (11 b): From $10 \mathrm{~b}(0.57 \mathrm{~g}, 4.3 \mathrm{mmol})$ and 4^{\prime}-(bromo-methyl)-2-biphenylcarbonitrile ($1.28 \mathrm{~g}, 4.7 \mathrm{mmol}$) to give the title compound as a colorless solid (93%); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.95$ (d, J=7.7 Hz, 1 H), 7.75 (t, J=7.7, 1 H), 7.63-7.49 (m, 6H), 7.26 (d,
$J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (m, 2H), 5.57 (s, 2H), 2.56 (s, 3H); MS (EI, $\left.150^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=323[\mathrm{M}]^{+\cdot}(53), 192$ (100).

4'-[(2-Ethyl-1 H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carbonitrile (11 c): From $10 \mathrm{c}(0.66 \mathrm{~g}, 4.5 \mathrm{mmol})$ and 4^{\prime}-(bromo-methyl)-2-biphenylcarbonitrile ($1.36 \mathrm{~g}, 5 \mathrm{mmol}$) to give the title compound as a colorless solid (87%); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.95$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.7,1 \mathrm{H}), 7.64-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.31 ($\mathrm{t}, \mathrm{J}=5.0,3 \mathrm{H}$); MS (EI, $\left.125^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=337[\mathrm{M}]^{+\cdot}(41), 192$ (100).

4'-[(2-Propyl-1 H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carbonitrile (11 d): From 10d ($1.4 \mathrm{~g}, 8.74 \mathrm{mmol}$) and 4'-(bromo-methyl)-2-biphenylcarbonitrile ($2.61 \mathrm{~g}, 9.6 \mathrm{mmol}$) to give the title compound as a colorless solid (77%); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=8.00$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 (td, $J=7.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.00$ (sextet, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{El}, 300^{\circ} \mathrm{C}\right): m / z(\%)=351$ $[\mathrm{M}]^{+\cdot}(73), 323$ (100), 322 (79), 192 (71).

Procedure for the preparation of 12-15: The compounds were prepared from compounds 11 a-d following the general procedure for saponification of carbonitriles.

4'-[(1 H-Benzo[d]imidazole-1-yl)methyl]biphenyl-2-carboxylic acid (12): From $11 \mathrm{a}(1.18 \mathrm{~g}, 3.8 \mathrm{mmol})$ and $\mathrm{KOH}(1.07 \mathrm{~g}, 19 \mathrm{mmol})$ to give the title compound as a colorless solid (32%); mp: 253$255{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=12.73$ (s, 1 H), 8.45 ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.72-7.67$ $(\mathrm{m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (td, J=7.5, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.56$ ($\mathrm{s}, 2 \mathrm{H}$); MS (EI, $225^{\circ} \mathrm{C}$): m/z (\%) = 328 [M] ${ }^{+\cdot}$ (31), 284 (17), 211 (100). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \times 0.25 \mathrm{H}_{2} \mathrm{O}$: C 75.77, H 5.00, N 8.42, found: C 75.79, H 5.14, N 8.39.

4'-[(2-Methyl-1 H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carboxylic acid (13): From 11 b ($1.29 \mathrm{~g}, 3.99 \mathrm{mmol}$) and $\mathrm{KOH}(0.466 \mathrm{~g}$, 8.3 mmol) to give the title compound as a colorless solid (53%); $\mathrm{mp}: 251-252^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=12.72$ (s, 1 H), 7.70 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H})$, 5.51 (s, 2H); MS (EI, $150^{\circ} \mathrm{C}$): m/z (\%) =342 [M] ${ }^{+\cdot}$ (51), 211 (100). Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \times 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 75.20, \mathrm{H} 5.45, \mathrm{~N} 7.97$, found: C 75.02, H 5.58, N 8.34.

4'-[(2-Ethyl-1 H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carboxylic acid (14): From $11 \mathrm{c}(1.32 \mathrm{~g}, 3.9 \mathrm{mmol})$ and $\mathrm{KOH}(1.09 \mathrm{~g}$, 19.5 mmol) to give the title compound as a colorless solid (73%); $\mathrm{mp}: 249-251^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=12.73(\mathrm{~s}, 1 \mathrm{H}), 7.70$ (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.51$ (m, 2H), 7.43 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (d, J=8.2 Hz, 2H), 5.53 (s, 2H), 2.87 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{El}, 200^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=$ $356[M]^{+}$(58), 211 (100). Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 77.51, H 5.66, N 7.86, found: C 77.60, H 5.70, N 7.82.

4'-[(2-Propyl-1 H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carboxylic acid (15): From $11 \mathrm{~d}(1 \mathrm{~g}, 2.85 \mathrm{mmol})$ and $\mathrm{KOH}(0.8 \mathrm{~g}$, 14.3 mmol) to give the title compound as a colorless solid (43%); mp: 254-255 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=12.74$ (s, 1 H), 7.69 (d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}$, $2 \mathrm{H}), 7.12$ (d, J=8.1 Hz, 2H), 5.54 ($\mathrm{s}, 2 \mathrm{H}$), $2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$,
1.79 (sextet, J=7.4 Hz, 2H), 0.96 (t, J=7.4 Hz, 3H); MS (EI, $225^{\circ} \mathrm{C}$): $\mathrm{m} / \mathrm{z}(\%)=370$ [M] $^{+\cdot}$ (62), 342 (79), 211 (100). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 77.81, H 5.99, N 7.56, found: C 77.86, H 6.17, N 7.59.

4'-[(2-Propyl-1H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-tetrazole (16): Compound 11 d ($1 \mathrm{~g}, 2.85 \mathrm{mmol}$) was dissolved in a solution of $\mathrm{NH}_{4} \mathrm{Cl}(1.98 \mathrm{~g}, 37 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(2.4 \mathrm{~g}, 37 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$. The reaction mixture was heated to $140^{\circ} \mathrm{C}$ for 21 h and then cooled and acidified with diluted $\mathrm{HCl}(0.1 \mathrm{~N})$. The first precipitation was collected by filtration, but not used. After one week, further precipitate was collected and recrystallized from MeOH to give the title compound as colorless crystals (11\%); mp: 236$237{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left.\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=16.25(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H})$, 7.61-7.52 (m, 2H), 7.52-7.46 (m, 2H), 7.20-7.14 (m, 2H), 7.07-7.02 (m, 4H), 5.49 (s, 2H), $2.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.74$ (sextet, $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (El, $275^{\circ} \mathrm{C}$): $\mathrm{m} / \mathrm{z}(\%)=394[\mathrm{M}]^{+}$ (16), 366 (14), 28 (100). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{6}$: C 73.07, H 5.62, N 21.30, found: C 73.42 , H 5.74 , N 20.98 .

1-(Biphenyl-4-ylmethyl)-2-propyl-1H-benzo[d]imidazole (17): From $10 \mathrm{~d} \quad(0.25 \mathrm{~g}, 1.56 \mathrm{mmol})$ and 4-(bromomethyl)biphenyl ($0.468 \mathrm{~g}, 1.72 \mathrm{mmol}$) following the general procedure for N -alkylation to give the title compound as a colorless solid (66%); mp: $105-109{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=7.65-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.41$ (m, 3H), 7.35 (t, J=7.2 Hz, 1H), 7.19-7.14 (m, 4H), 5.54 (s, 2H), 2.85 $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (El, $150^{\circ} \mathrm{C}$): m/z (\%) = 326 [M] ${ }^{+\cdot}$ (52), 298 (51), 297 (27), 167 (100). Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2}$: C 84.63, H 6.79, N 8.58, found: C 84.58, H 6.45, N 8.58.

8-(2-Propyl-1H-benzo[d]imidazole-1-yl)octanoic acid (18): A stirred solution of compound $10 \mathrm{~d}(0.5 \mathrm{~g}, 3.12 \mathrm{mmol})$ in anhyd DMF (5 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{NaH}(0.25 \mathrm{~g}, 60 \%$ dispersion in mineral oil, 6.24 mmol). Separately, a stirred solution of 8-bromooctanoic acid ($0.765 \mathrm{~g}, 3.43 \mathrm{mmol}$) in anhyd DMF (3 mL) was treated with $\mathrm{NaH}(0.137 \mathrm{~g}, 60 \%$ dispersion in mineral oil, 3.43 mmol) at $0^{\circ} \mathrm{C}$. After $\sim 30 \mathrm{~min}$ (or after no more visible emergence of H_{2}) the solution of 8-bromooctanoic acid was added slowly to the solution of $\mathbf{1 0 d}$ following the general procedure for N -alkylation to give the title compound as colorless crystals (38\%); $\mathrm{mp}: 100-101^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=11.98$ (s, 1 H), 7.53 (dd, J= $6.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 1.82 (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.68(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.46$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (EI, $\left.150^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=302$ [M] ${ }^{+\cdot}(40), 259$ (62), 187 (60), 173 (51), 146 (92), 132 (100). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 71.49, H 8.67, N 9.26 , found: C 71.40, H 8.52, N 9.20.

4-[(2-Propyl-1H-benzo[d]imidazole-1-yl)methyl]benzoic acid (19): 4-[(2-Propyl-1H-benzo[d]imidazole-1-yl)methyl]benzonitrile was prepared from $10 \mathrm{~d}(0.25 \mathrm{~g}, 1.56 \mathrm{mmol})$ and 4 -(bromomethyl)benzonitrile ($0.337 \mathrm{~g}, 1.72 \mathrm{mmol}$) following the general procedure for N -alkylation to give a colorless solid (94\%); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=$ $7.74(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.15(\mathrm{~m}, 4 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.69$ (sextet, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{El}, 125^{\circ} \mathrm{C}\right): m / z(\%)=275$ [M] ${ }^{+\cdot}$ (68), 246 (100), 116 (40). Compound 19 was prepared from the benzonitrile intermediate ($0.4 \mathrm{~g}, 1.45 \mathrm{mmol}$) and $\mathrm{KOH}(0.407 \mathrm{~g}$, 7.25 mmol) following the general procedure for saponification of carbonitriles to give the title compound as a colorless solid (49\%); $\mathrm{mp}: 219-220^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=12.94(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}$, $4 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.74$ (sextet, $J=7.4 \mathrm{~Hz}$,
$2 \mathrm{H}), 0.93$ (t, J=7.4 Hz, 3H); MS (El, $100^{\circ} \mathrm{C}$): m/z (\%) = 294 [M] ${ }^{+}$ (72), 266 (100), 265 (85), 159 (29), 135 (38), 131 (57). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 77.95, H 5.12, N 7.90, found: C 77.74, H 5.16, N 7.91.

1-[(2'-Cyanobiphenyl-4-yl)methyl]-2-propyl-1H-benzo[d]imida-zole-5-carboxylic acid (20-5) and 1-[(2'-cyanobiphenyl-4-yl)meth-yl]-2-propyl-1H-benzo[d]imidazole-6-carboxylic acid (20-6): Compound $1(3.5 \mathrm{~g}, 15.1 \mathrm{mmol})$ was treated as described for the procedure of N -alkylation with 4^{\prime}-(bromomethyl)-2-biphenylcarbonitrile $(4.5 \mathrm{~g}, 16.6 \mathrm{mmol})$ to give an isomeric mixture of ethyl-1-[(2'-cyano-biphenyl-4-yl)methyl]-2-propyl-1 H -benzo[d]imidazole-5-carboxylate and ethyl-1-[(2'-cyanobiphenyl-4-yl)methyl]-2-propyl-1H-benzo[d]i-midazole-6-carboxylate as a colorless solid $(5.66 \mathrm{~g}, 14.3 \mathrm{mmol}$, 95%). After cleavage of the ester by refluxing in aq NaOH (10\%) and MeOH ($60 \mathrm{~mL}, 1: 1$) for 2 h , it was possible to separate the regioisomers by column chromatography with a $\mathrm{DCM} / \mathrm{MeOH}$ (9:1). The 5-regioisomer was also isolated by recrystallization from MeOH or DCM/MeOH to give compound 20-5 as a colorless solid (37% in total); ${ }^{1} \mathrm{H}$ NMR ([D $\left.\left.{ }_{6}\right] \mathrm{DMSO}\right): ~ \delta=12.68$ ($\mathrm{s}, 1 \mathrm{H}$), 8.19 (d, J=1.5 Hz, $1 \mathrm{H}), 7.93$ (dd, $J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 5.65 (s, 2H), 2.88 (t, J=7.5 Hz, 2H), 1.79 (sextet, J=7.4 Hz, 2H), $0.96(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (EI, $200^{\circ} \mathrm{C}$): $\mathrm{m} / \mathrm{z}(\%)=395[\mathrm{M}]^{+\cdot}(41), 367$ (70), 192 (100). 20-6: colorless solid (18% in total); ${ }^{1} \mathrm{H}$ NMR ([D6]DMSO): $\delta=12.76(\mathrm{~s}, 1 \mathrm{H}), 8.12$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (dd, $J=$ $7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (td, $J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.70 (s, 2H), 2.89 (t, J=7.5 Hz, 2H), 1.80 (sextet, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (EI, $200^{\circ} \mathrm{C}$): m/z (\%) $=395$ [M] ${ }^{+\cdot}$ (50), 367 (69), 192 (100).

1-[(2'-Carboxybiphenyl-4-yl)methyl]-2-propyl-1H-benzo[d]imida-zole-5-carboxylic acid (21-5) and 1-[(2'-carboxybiphenyl-4-yl)-methyl]-2-propyl-1H-benzo[d]imidazole-6-carboxylic acid (21-6): The compounds were prepared from $20-5(1 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $20-$ $6(1 \mathrm{~g}, 2.5 \mathrm{mmol})$ following the general procedure for saponification of carbonitriles. 21-5: colorless solid (65%); mp: 295-297 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=12.69(\mathrm{~s}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (td, $J=7.6,1.3 \mathrm{~Hz}$, 1 H), 7.33 (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, J=8.3 Hz, 2H), 7.13 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.79$ (sextet, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (El, $200^{\circ} \mathrm{C}$): m/z (\%) $=414$ [M] ${ }^{+\cdot}$ (51), 386 (48), 211 (100). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \times 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$ 70.91, H 5.47, N 6.62, found: C 70.76, H 5.55, N 6.51. 21-6: colorless solid (68\%); mp: $256-259{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=12.72$ (s, 2H), 8.12 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (dd, $J=$ $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (td, J=7.6, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.78 (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.95$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (EI, $200^{\circ} \mathrm{C}$): $m / z(\%)=414[\mathrm{M}]^{+\cdot}(44), 386$ (45), 211 (100). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \times 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 71.67, \mathrm{H} 5.41, \mathrm{~N} 6.69$, found: C $71.27, \mathrm{H}$ 5.71, N 6.64.

4'-[(2-Propyl-2',5-bi-1H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carbonitrile (22-5) and 4'-[(2-propyl-2',6-bi-1H-benzo[d]imida-zole-1-yl)methyl]biphenyl-2-carbonitrile (22-6): A solution of 20$5 / 6(1 \mathrm{~g}, 2.5 \mathrm{mmol})$ in THF (5 mL) was treated with $\mathrm{SOCl}_{2}(0.091 \mathrm{~mL}$, 1.25 mmol) and heated to $60^{\circ} \mathrm{C}$ for 1 h . After cooling, the reaction mixture was added to a stirred solution of 1,2-benzenediamine ($541 \mathrm{mg}, 5 \mathrm{mmol}$) in THF (5 mL) at $0^{\circ} \mathrm{C}$ and stirred for 2 h at RT. After the standard work up previously described for compound 1 , the product (mono-acylated 1,2-benzenediamine, 580 mg ,
$1.2 \mathrm{mmol}, 48 \%$) was treated with toluene (12 mL) and $p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($456 \mathrm{mg}, 2.4 \mathrm{mmol}$) as described for the preparation of compound 1 to give compound $22-5$ as a colorless solid ($92 \%, 39 \%$ total); ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=13.06$ ($\mathrm{s}, 1 \mathrm{H}$), 8.43 ($\mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.09 (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (dd, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (td, $J=$ $7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2 H), 1.81 (sextet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 0.99 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); MS (EI, $\left.225^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=467[\mathrm{M}]^{+}$(100), 438 (26), 275 (18), 192 (68). 22-6: colorless solid ($98 \%, 47 \%$ total); ${ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6} \mathrm{DMSO}\right.$): $\delta=12.82$ (s , 1 H), 8.35 (d, J=1.1 Hz, 1 H), 8.04 (dd, J=8.4, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (dd, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2 H), 1.81 (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 0.98 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); MS (EI, $\left.225^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=467[\mathrm{M}]^{+}(100), 438(28), 275(18), 192(65)$.

4'-[(2-Propyl-2',5-bi-1H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carboxylic acid (23-5): The compound was prepared from 22-5 ($0.45 \mathrm{~g}, 0.96 \mathrm{mmol}$) following the general procedure for saponification of carbonitriles to give the title compound as a colorless solid (62%); mp: $275-276^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=12.81$ ($\mathrm{s}, 2 \mathrm{H}$), 8.39 (d, J=1.1 Hz, 1 H), 8.07 (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 3 \mathrm{H})$, $7.52(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H})$, 7.18-7.15 (m, 4H), $5.60(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81$ (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{El}, 200^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=$ $486\left[\mathrm{M}^{+}(22), 442\right.$ (78), 211 (27), 167 (100), 44 (61). Anal. calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \times 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 75.82, \mathrm{H} 5.44, \mathrm{~N} 11.41$, found: C 75.90, H 5.73, N 11.73.

4'-[(2-Propyl-2',6-bi-1H-benzo[d]imidazole-1-yl)methyl]biphenyl-2-carboxylic acid (23-6): The compound was prepared from 22-6 ($0.55 \mathrm{~g}, 1.17 \mathrm{mmol}$) following the general procedure for saponification of carbonitriles to give the title compound as a colorless solid (58%); mp: $263-265^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ([D] ${ }^{2} \mathrm{DMSO}$): $\delta=12.82$ (s, 2H), 8.31 (d, J=0.9 Hz, 1 H), 8.02 (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 4 \mathrm{H})$, $7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41$ (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82 (sextet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; MS (El, $200^{\circ} \mathrm{C}$): $\mathrm{m} / \mathrm{z}(\%)=486[\mathrm{M}]^{+}(17), 442(77), 211$ (24), 167 (100), 44 (64). Anal. calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \times 0.25 \mathrm{H}_{2} \mathrm{O}$: C 75.82, H $5.44, \mathrm{~N}$ 11.41, found: C 75.72, H 5.87, N 11.39.

4'-[(1'-Methyl-2-propyl-2',5-bi-1H-benzo[d]imidazole]-1-yl)me-

thyl]biphenyl-2-carboxylic acid (24-5): The compound was prepared from $23-5(0.29 \mathrm{~g}, 0.6 \mathrm{mmol})$ following the same procedure as described for the preparation of 24-6 (below) to give the title compound as a colorless solid (29%); mp: $185-189{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ([D. ${ }_{6}$]DMSO): $\delta=12.77$ ($\mathrm{s}, 1 \mathrm{H}$), 8.07 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72-7.66 (m , 4 H), 7.61 (d, J=7.6 Hz, 1 H), 7.54 (td, J=7.6, 1.2 Hz, 1 H), 7.43 (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24 (td, J=7.4, 1.3 Hz, 1H), 7.21-7.17 (m, 2H), 5.63 (s, 2H), $3.92(\mathrm{~s}$, 3 H), 2.91 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.83 (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.00(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$); MS (El, $225^{\circ} \mathrm{C}$): m/z (\%) = $500[\mathrm{M}]^{+\cdot}(2), 455$ (100), 211 (11). Anal. calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \times 0.25 \mathrm{H}_{2} \mathrm{O}$: C 76.09, H 5.69, N 11.09, found: C 76.22, H 6.03, N 10.81 .

4'-[(1'-Methyl-2-propyl-2',6-bi-1H-benzo[d]imidazole]-1-yl)me-thyl]biphenyl-2-carboxylic acid (24-6): A solution of compound $23-6(0.33 \mathrm{~g}, 0.68 \mathrm{mmol})$ in DMF (3 mL) was treated with NaH (2 mmol) and then subsequently by dropwise addition of Mel ($0.047 \mathrm{~mL}, 0.75 \mathrm{mmol}$ in 3 mL DMF). The reaction was worked up and purified as described for the general procedure of N -alkylation to give compound $24-6$ as a colorless solid (21%); mp: 253- $254^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=12.87(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$
(d, J=8.3 Hz, 1H), 7.72-7.68 (m, 2H), 7.65 (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (td, $J=7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, $J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.19$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.84$ (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; MS (EI, $250^{\circ} \mathrm{C}$): m/z (\%) $=500[M]^{+\cdot}(3), 455$ (100), 211 (13). Anal. calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}$ 76.78, H 5.64, N 11.19, found: C 76.84, H 5.85, N 11.39.

Biology

Telmisartan (tablets, 80 mg) and pioglitazone (tablets, 45 mg) were obtained from the pharmacy, the active compound was extracted with CHCl_{3}, purified by chromatography and recrystallized from MeOH .

Differentiation Assay: Murine 3T3-L1 preadipocytes were cultured in DMEM ($+10 \%$ FCS) and differentiated by a modified previously described protocol ${ }^{[9]}$ and incubated for 2 d . Postconfluent preadipocytes were treated for 3 d with complete medium (dexamethasone, $1 \mu \mathrm{~m}$; insulin, $0.17 \mu \mathrm{~m}$). The medium was replaced and the cells were incubated for a further 3 d with insulin ($0.17 \mu \mathrm{~m}$), and for the last 3 days with only complete medium. Cells were treated the whole time period with either vehicle (DMSO) as negative control, pioglitazone and telmisartan as positive controls or the synthesized compounds until day 9 of differentiation, after which the cells were washed with phosphate-buffered saline and stained with Oil Red O. ${ }^{[9]}$ For quantification, the dye was extracted with isopropanol $(80 \% \mathrm{v} / \mathrm{v})$ and the absorption was measured at 515 nm .

PPAR γ Transactivation Assay: Transient transfection (Invitrogen) and luciferase assays (Promega) were performed as described in the manufacturer's protocol. COS-7 cells $\left(8 \times 10^{5} /\right.$ well in a 96 -well plate) were seeded the day before and transfected for each well using $0.25 \mu \mathrm{~L}$ Lipofectamine 2000 (Invitrogen) with 4.5 ng pGal4hPPAR γ DEF, 45 ng pGal5-TK-pGL3 and 3 ng pRL-CMV in $25 \mu \mathrm{~L}$ OptiMEM (Gibco) ${ }^{\left[{ }^{[8]}\right.}$ After 4 h , a sixth part of the transfection medium volume of DMEM ($+10 \%$ FCS) plus the requisite compounds or vehicle (DMSO) was added, and luciferase activity was measured after 36 h .

Acknowledgements

This work was supported by Grants Gu 285/7-1 and Ki 712/3-1 from the Deutsche Forschungsgemeinschaft (DFG).

Keywords: peroxisome proliferator-activated receptors agonists - selective PPAR γ modulators - telmisartan - structureactivity relationships
[1] T. M. Willson, P. J. Brown, D. D. Sternbach, B. R. Henke, J. Med. Chem. 2000, 43, 527-550.
[2] J. Berger, D. E. Moller, Annu. Rev. Med. 2002, 53, 409-435.
[3] D. J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schütz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, R. M. Evans, Cell 1995, 83, 835-839.
[4] Nuclear Receptors Nomenclature Committee, Cell 1999, 97, 161-163.
[5] B. M. Spiegelman, Diabetes 1998, 47, 507-514.
[6] T. M. Willson, W. Wahli, Curr Opin Chem. Biol 1997, 1, 235-241.
[7] J. P. Berger, A. E. Petro, K. L. Macnaul, L. J. Kelly, B. B. Zhang, K. Richards, A. Elbrecht, B. A. Johnson, G. Zhou, T. W. Doebber, C. Biswas, M. Parikh, N. Sharma, M. R. Tanen, G. M. Thompson, J. Ventre, A. D. Adams, R. Mosley, R. S. Surwit, D. E. Moller, Mol. Endocrinol. 2003, 17, 662-676.
[8] R. Mukherjee, P. A. Hoener, L. Jow, J. Bilakovics, K. Klausing, D. E. Mais, A. Faulkner, G. E. Croston, J. R. Paterniti, Mol. Endocrinol. 2000, 14, 1425-1433.
[9] M. Schupp, J. Janke, R. Clasen, T. Unger, U. Kintscher, Circulation 2004, 109, 2054-2057.
[10] S. C. Benson, H. A. Pershadsingh, C.I. Ho, A. Chittiboyina, P. Desai, M. Pravenec, N. Qi, J. Wang, M. A. Avery, T. W. Kurtz, Hypertension 2004, 43, 993-1002.
[11] M. Schupp, M. Clemenz, R. Gineste, H. Witt, J. Janke, S. Helleboid, N. Hennuyer, P. Ruiz, T. Unger, B. Staels, U. Kintscher, Diabetes 2005, 54, 3442-3452.
[12] B. Narr, A. D. Bomhard, N. D. Hauel, J. van Meel, W. Wienen, M. Entzeroth (Dr. Karl Thomae GmbH, Germany), EP 0392 317, 1990.
[13] J. Charton, S. Girault-Mizzi, C. Sergheraert, Chem. Pharm. Bull. 2005, 53, 492-497.
[14] U. J. Ries, G. Mihm, B. Narr, K. M. Hasselbach, H. Wittneben, M. Entzeroth, J. C. van Meel, W. Wienen, N. H. Hauel, J. Med. Chem. 1993, 36, 4040-4051.
[15] R. D. Cramer, M. A. Poss, M. A. Hermsmeier, T. J. Caulfield, M. C. Kowala, M. T. Valentine, J. Med. Chem. 1999, 42, 3919-3933.
[16] D. V. Erbe, K. Gartrell, Y. L. Zhang, V. Suri, S. J. Kirincich, S. Will, M. Perreault, S. Wang, J. F. Tobin, Vascul. Pharmacol. 2006, 45, 154-162.
[17] M. Schupp, L. D. Lee, N. Frost, S. Umbreen, B. Schmidt, T. Unger, U. Kintscher, Hypertension 2006, 47, 586-589.
[18] E. Raspé, L. Madsen, A. M. Lefebvre, I. Leitersdorf, L. Gelman, J. PeinadoOnsurbe, J. Dallongeville, J. C. Fruchart, R. Berge, B. Staels, J. Lipid Res. 1999, 40, 2099-2110.

Received: August 29, 2008
Revised: December 17, 2008
Published online on February 5, 2009

