Notes

Structure-Activity Relationship Studies of CNS Agents, Part 22 ${ }^{[1]}$:

A Search for New Trazodone-Like Antidepressants: Synthesis and Preliminary Receptor Binding Studies

Jerzy L. Mokrosz*, Beata Duszynska, Maria H. Paluchowska, S. Charakchieva-Minol, and Maria J. Mokrosz
Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Kraków, Poland

Key Words: 1-arylpiperazines, trazodone analogs, 5-HT $1 \mathrm{~A} / 5-H T_{2 \mathrm{~A}}$ binding profile

Summary

New 1-phenyl- and 1-(3-chlorophenyl)piperazines containing a 4 -[3-(heterocyclic)propyl] fragment were synthesized. It was found that of all the investigated compounds $\mathbf{1 1 b}\left(K_{\mathrm{i}}=13 \pm 2 \mathrm{nM}\right)$ and $8 \mathrm{~b}\left(K_{\mathrm{i}}=38 \pm 2 \mathrm{nM}\right)$ were the most active $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ ligands, respectively. Several derivatives (3a, 4a, 8b, 11b, 12b, 13a, and 13b) were selected as good candidates for new, potential antidepressants on the basis of their $5-\mathrm{HT}_{1 \mathrm{~A}} / 5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor binding profiles.

Etoperidone (1b) and trazodone (2b) belong to the class of atypical antidepressants which are used in the therapy of depression and anxiety ${ }^{[2,3]}$. The basis for the antidepressant activity of these compounds has long been an object of interest ${ }^{[4-8]}$. It has been suggested that both the $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor affinities of $\mathbf{1 b}$ and $\mathbf{2 b}$ are sufficiently high to contribute to their overall pharmacological profile ${ }^{[6-8]}$.

1-4,6-13
$\mathrm{a}: \mathrm{R}=\mathrm{H} ; \mathrm{b}: \mathrm{R}=\mathrm{Cl}$

1

6

10

5b

3

8

12

Scheme

Indeed, it was reported that $\mathbf{1 b}$ and $\mathbf{2 b}$ may be classified as antagonists at both the $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors ${ }^{[5-8]}$.
In order to search for new, non-selective $5-\mathrm{HT}_{1 \mathrm{~A}}$ and 5$\mathrm{HT}_{2 \mathrm{~A}}$ receptor ligands, the present paper deals with the synthesis of a new set of 1-phenyl- and 1-(3-chlorophenyl)piperazines 5 b and $6-13$, as well as with the $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor affinities of compounds $\mathbf{1 - 1 3}$.

Table: The $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ binding constants (K_{i}), and the $5-\mathrm{HT}_{1 \mathrm{~A}} / 5-$ $\mathrm{HT}_{2 \mathrm{~A}}$ selectivity ratio of compounds $\mathbf{1 - 1 3}$.

No.	$K_{\mathrm{i}}[\mathrm{nM}] \pm \mathrm{SEM}^{[\mathrm{a}]}$		Selectivity ${ }^{[b]}$
	$5-\mathrm{HT}_{1 \mathrm{~A}}$	$5-\mathrm{HT}_{2 \mathrm{~A}}$	$\frac{5-\mathrm{HT}_{1 \mathrm{~A}}}{5-\mathrm{HT}_{2 \mathrm{~A}}}$
8-OH-DPAT	1.4 ± 0.2	ND	
ritanserin	ND	1.1 ± 0.1	
$1 b^{[c]}$	201 ± 7	32 ± 3	6.3
$2 \mathrm{~b}^{[\mathrm{c}]}$	244 ± 34	38 ± 9	6.4
3a	141 ± 12	75 ± 12	1.9
3b	42 ± 2	100 ± 5	0.42
4a	153 ± 34	39 ± 7	3.9
4b	80 ± 3	321 ± 62	0.25
5 b	106 ± 9	219 ± 18	0.48
6 a	812 ± 9	1270 ± 40	0.64
6b	317 ± 11	374 ± 5	0.85
7b	2710 ± 60	1540 ± 200	1.8
8 a	136 ± 5	138 ± 13	0.99
8b	52 ± 3	38 ± 2	1.4
9 a	689 ± 118	159 ± 10	4.3
10b	282 ± 6	437 ± 13	0.64
11a	41 ± 5	306 ± 8	0.13
11b	13 ± 2	67 ± 4	0.19
12a	71 ± 5	253 ± 10	0.28
12b	36 ± 2	80 ± 3	0.45
$13 a^{\text {[d] }}$	15 ± 2	40 ± 2	0.48
13b	31 ± 3	58 ± 5	0.53

[^0]The investigated compounds showed a diversified affinity for both $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors, which ranged from 10^{-8} to $3 \times 10^{-6} \mathrm{M}$ (Table). Furthermore, all of them may be classified as non-selective $5-\mathrm{HT}_{1 \mathrm{~A}} / 5-\mathrm{HT}_{2 \mathrm{~A}}$ ligands, as the observed selectivity ratio did not exceed a factor of 8 ($c f$. selectivity ratios of 0.13 and 6.4 for 11 a and 2 b , respectively). At this stage of study, the role of a terminal heterocyclic moiety of long-chain 1 -arylpiperazines in the formation and stabilization processes of bioactive complexes with $5-\mathrm{HT}_{1 \mathrm{~A}}$ or $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors is still hypothetical but such an additional anchoring group seems to be desired for the activity of this class of ligands ${ }^{[9-11]}$. On the other hand, terminal heterocyclic fragments of the investigated compounds may interact with the respective $5-\mathrm{HT}_{1 \mathrm{~A}}$ or $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor sites in several different ways. It is anticipated that the following interaction modes (between the terminal heterocyclic fragments and the receptor binding sites) may contribute to the observed $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ affinities: dipole-dipole and π-electron interactions, hydrogen bonds, or hydrophobic forces ${ }^{[9-15]}$. None of these effects, however, controls exclusively the affinity of the investigated compounds. Therefore only some general conclusions on the structure-affinity relationships may be drawn on the basis of the binding data presented in the Table. Introduction of the chlorine atom in the phenyl ring had a pronounced but typical effect on $5-\mathrm{HT}_{1 \mathrm{~A}}$ affinity ($c f$. series $\mathbf{b} v s$. a, Table) ${ }^{[12,11]}$. The observed selectivity ratio did not differentiate between 1-and 2-benzotriazole isomers (cf. $\mathbf{3 a}$ vs. $\mathbf{4 a}$ and $\mathbf{3 b}$ vs. 4b). The extension of derivative $\mathbf{3 b}$ with a phenyl group ($\mathbf{5 b}$) had no effect on the $5-\mathrm{HT}_{1 \mathrm{~A}} / 5-\mathrm{HT}_{2 \mathrm{~A}}$ selectivity ratio, though the overall affinity of $\mathbf{5 b}$ was twice as low as that of $\mathbf{3 b}$. The derivatives containing terminal fragments $6,7,9$ and 10 displayed considerably lower receptor affinities in comparison with etoperidone (1b) or trazodone (2b). By contrast, compounds 3a, 4a, 8b, 11b, 12b, 13a, and 13 b showed fairly high $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ affinities. The $5-\mathrm{HT}_{2 \mathrm{~A}}$ affinities of the latter compounds are comparable with those found for etoperidone (1b) and trazodone (2b). On the other hand, the $5-\mathrm{HT}_{1 \mathrm{~A}} / 5-\mathrm{HT}_{2 \mathrm{~A}}$ selectivity factor differentiates the discussed derivatives. While 3a, 4a, and 8 b show the same direction of the selectivity as the lead compounds $\mathbf{1 b}$ and 2b, the other derivatives (11b, 12b, 13a, 13b) show the inverse selectivity ratio (Table). Thus it is anticipated that at least the derivatives $\mathbf{3 a}, \mathbf{4 a}$, and $\mathbf{8 b}$ may be regarded as candidates for new, potential antidepressants. Further behavioral studies on the functional activity of 3a, 4a, 8b, 11b, 12b, 13a, and 13b at $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors are presently in progress.

Acknowledgement

This study was supported by the Polish State Committee for Scientific Research (KBN), grants 4/1449/91/01 (J.L.M.) and 6-P206-024-07 (M.H.P.)

Experimental Part

Melting points: Boetius apparatus (uncorrected).- Elemental analyses: Within $\pm 0.4 \%$ of calculated values. Perkin Elmer 240 analyser (Institute of Organic Chemistry, Warsaw).- ${ }^{1} \mathrm{H}$ NMR spectra (CDCl_{3}): Varian EM-360L (60 MHz) spectrometer, TMS int. standard.- MS spectra: LKB 2091 instrument (70 eV).-Materials: etoperidone (1b) and trazodone ($\mathbf{2 b}$) were obtained from the F. Angelini Research Institute, and compounds 3a,b and 4a,b were synthesized according to the published procedure ${ }^{[16]}$.

1-[3-(Benzotriazol-1-yl)-3-phenylpropyl]-4-(3-chlorophenyl)piperazine dihydrochloride (5b)

A mixture of benzotriazole ($0.95 \mathrm{~g}, 8 \mathrm{mmol}$) and cinnamaldehyde $(0.53 \mathrm{~g}$, 4 mmol) in $\mathrm{Et}_{2} \mathrm{O}$ (30 ml , freshly distilled from $\mathrm{Na} /$ benzophenone) was stirred at room temp. for 6 h and left overnight. The reaction mixture was cooled in an ice-water bath and a solution of 1-(3-chlorophenyl)piperazine $(0.67 \mathrm{~g}$, 4 mmol) was added in one portion upon stirring. Then the mixture was allowed to reach room temp. and the stirring was continued for 20 h . Afterwards the solvent was evaporated, the residue was dissolved in dioxane (40 ml), treated with $\mathrm{NaBH}_{4}(0.076 \mathrm{~g}, 2 \mathrm{mmol}$), refluxed for 4 h and left overnight at room temp. The reaction mixture was poured into $10 \% \mathrm{NaOH}$ $(40 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$. The combined organic layers were washed with water and dried over anhydrous MgSO_{4}. Then the solvent was evaporated, and the oily residue containing a mixture of $\mathbf{5 b}$ and 5 c was separated by $\mathrm{CC}\left(\mathrm{SiO}_{2}, \mathrm{AcOEt} / n\right.$-hexane $\left.-1 / 2\right)$. The products were converted into HCl salts according to a standard procedure ${ }^{[13]} .5 \mathbf{b} \cdot 2 \mathrm{HCl}$: yield 0.42 g (21%). Mp 144-146 ${ }^{\circ} \mathrm{C}$ (acetone). ${ }^{1} \mathrm{H}$ NMR (base): $\delta=2.3-2.8(\mathrm{~m}, 8 \mathrm{H}, 4$ $\left.\mathrm{CH}_{2}\right), 3.0-3.35\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.9-6.3(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.8-7.3(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.2-7.75(\mathrm{~m}, 10 \mathrm{H}$, aromatic H$), 8.0-8.3(\mathrm{~m}, 1 \mathrm{H}$, benzotriazole H-7).- Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{ClN}_{5} \cdot 2 \mathrm{HCl}\right)$. 1-(3-Chlorophenyl)-4-I(E)-3-phenyl-2propenyllpiperazine dihydrochloride (5c): yield 0.55 g (36%). Mp $168-$ $170{ }^{\circ} \mathrm{C}$ (acetone). ${ }^{1} \mathrm{H}$ NMR (base): $\delta=2.4-2.75\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.05-3.45$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 6.35-6.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.65-7.0(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$)$, 7.2-7.65 (m, 6H, aromatic H).-Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{2} \cdot 2 \mathrm{HCl}\right)$.

General procedure for preparing derivatives $\mathbf{6 a}$ and $\mathbf{6 b}$

A mixture of succinimide ($0.12 \mathrm{~g}, 1.21 \mathrm{mmol}$), an appropriate 4-(3-bromo-propyl)-1-arylpiperazine (1.25 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 3.6 \mathrm{mmol})$ in acetonitrile (20 ml) was refluxed for 4 h and cooled down. An inorganic precipitate was filtered off and the solvent was evaporated. The product was converted into a HCl salt according to a standard procedure ${ }^{[17]}$.

N-[3-(4-Phenyl-1-piperazinyl)propyl]succinimide dihydrochloride (6а)

Yield 90%. Mp 232-234 ${ }^{\circ} \mathrm{C}$ (80% ethanol). $-{ }^{1} \mathrm{H}$ NMR (base): $\delta=1.6-2.0$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.2-2.6\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.5\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.0-3.3(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right), 3.57\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.7-7.3(\mathrm{~m}, 5 \mathrm{H}$, aromatic H$)$.- Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$.

N-(3-[4-(3-Chlorophenyl)-1-piperazinyl]propyl/succinimide dihydrochloride (6b)

Yield 86%. Mp $216-218^{\circ} \mathrm{C}$ (ethanol/acetone $-1 / 1$).- ${ }^{1} \mathrm{H}$ NMR (base): $\boldsymbol{\delta}$ $=1.6-2.0\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.2-2.8\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 3.0-3.3\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $3.6\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.7-7.5(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$)$.- Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}\right)$.

General procedure for preparing derivatives 7-13

A mixture of the heterocyclic amido-functionalized educt (2 mmol), an appropriate 4-(3-bromopropyl)-1-arylpiperazine (2.1 mmol), $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst (2 g) in acetonitrile (30 ml) was stirred for 2 h at room temp. (7 b , 10b), or was refluxed for $1 \mathrm{~h}(8,9 \mathrm{a}, 11-13)$. An inorganic precipitate was filtered off and the solvent was evaporated. The residue was purified by CC ($\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CHCl}_{3} / n$-hexane $-1 / 1$ for $\mathbf{7 b}$ and $\mathbf{1 0 b}$, or $\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} /$ methanol $9 / 1$ for all the others). Free bases were converted into HCl salts according to the standard procedure ${ }^{[17]}$.

N-(3-[4-(3-Chlorophenyl)-1-piperazinyl]propyl/maleimide dihydrochloride (7b)

Yield $21 \% . \mathrm{Mp} 215-217^{\circ} \mathrm{C}$ (acetone). ${ }^{1} \mathrm{H}$ NMR (base): $\delta=1.8$ (quint, J $\left.=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.3-2.7\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.0-3.3\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.67(\mathrm{t}$, $\left.J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.8(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.85-7.4(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$)$.Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}\right)$.

N-[3-(4-Phenyl-1-piperazinyl)propyl]-2(IH)-pyridone dihydrochloride (8a)
Yield 30%. Mp $64-65^{\circ} \mathrm{C}$ (ether $/ n$-hexane $-1 / 1$, base), $230-232{ }^{\circ} \mathrm{C}$ (acetone, HCl salt).- MS (base); m / z (\%): 297 (5) $\left[\mathrm{M}^{+}\right], 178$ (12), 175 (10), 165 (100), 132 (22), 105 (11), 77 (15).-Anal. ($\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}$).

N-(3-[4-(3-Chlorophenyl)-1-piperazinyl]propyl)-2(lH)-pyridone dihydrochloride ($\mathbf{8} \mathbf{b}$)

Yield 25%. Mp 206-208 ${ }^{\circ} \mathrm{C}$ (acetone). ${ }^{1} \mathrm{H}$ NMR (salt, $\mathrm{CDCl}_{3} /\left[\mathrm{D}_{4}\right]$ methanol): $\delta=2.25-2.8\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.25-3.8\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 4.45(\mathrm{t}, J=7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.9-7.35(\mathrm{~m}, 6 \mathrm{H}$, aromatic H$), 7.95(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$, $2(1 \mathrm{H})$-pyridone $\mathrm{H}-4), 8.35(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, 2(1 \mathrm{H})$-pyridone $\mathrm{H}-6)$.- Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClN} \mathrm{N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}\right)$.

5-Methyl-2-oxo-1-[3-(4-phenyl-1-piperazinyl)propyl]-1,2-dihydropyrimidine dihydrochloride (9a)
Yield 19%. Mp $129-131{ }^{\circ} \mathrm{C}$ (acetone).- MS (base); m / z (\%): 312 (100) $\left[\mathrm{M}^{+}\right], 180(85), 173$ (65), 132 (59), 105 (45), 77 (41).-Anal. ($\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} \cdot$ 2 HCl).

3,3-Diethyl-2,4-dioxo-N-/-[4-(3-chlorophenyl)-I-piperazinyl]propyl)-1,2,3,4-tetrahydropyridine dihydrochloride (10b)

Yield 80%. Mp $108-110^{\circ} \mathrm{C}$ (acetone/ether -9/1).- ${ }^{1} \mathrm{H}$ NMR (base): $\delta=$ $0.77\left(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.67-2.2\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.23-2.8(\mathrm{~m}, 6 \mathrm{H}, 3$ $\left.\mathrm{CH}_{2}\right), 3.0-3.3\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.87\left(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.53(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.67-7.3(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$)$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}\right.$ $0.5 \mathrm{H}_{2} \mathrm{O}$).

N-[3-(4-Phenyl-1-piperazinyl)propyl]caprolactam dihydrochloride (11a)
Yield 38%. Mp 200-203 ${ }^{\circ} \mathrm{C}$ (acetone).-MS (base); $m / z(\%): 315(1)\left[\mathrm{M}^{+}\right]$, 175 (100), 132 (18), 105 (20), 77 (13).-Anal. ($\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$).

N-(3-[4-(3-Chlorophenyl)-1-piperazinyllpropyl)caprolactam dihydrochloride (11b)

Yield 27%. Mp 227-230 ${ }^{\circ} \mathrm{C}$ (acetone).-MS (base); $m / z(\%): 349$ (5) [$\left.\mathrm{M}^{+}\right]$, 351 (2) [$\left.\mathrm{M}^{+}+2\right], 266$ (16), 211 (18), 209 (67), 183 (100), 154 (59).-Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}\right)$.

N-[3-(4-Phenyl-1-piperazinyl)propyl]-2,3-dioxoindoline dihydrochloride (12a)

Yield 71%. Mp $148-149^{\circ} \mathrm{C}$ (acetone/ethanol - 3/1, base), $156-159{ }^{\circ} \mathrm{C}$ (acetone, HCl salt). ${ }^{1} \mathrm{H}$ NMR (base): $\delta=1.75-2.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35-2.7$ (m, 6H, $3 \mathrm{CH}_{2}$), $3.05-3.3\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.85\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $6.8-7.35(\mathrm{~m}, 7 \mathrm{H}$, aromatic H$), 7.4-7.75(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$) .-$ Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}\right)$.

N-(3-[4-(3-Chlorophenyl)-1-piperazinyl]propyl)-2,3-dioxoindoline dihydrochloride (12b)

Yield 62%. Mp $153-155^{\circ} \mathrm{C}$ (base, acetone/ethanol - $3 / 1$), $182-184^{\circ} \mathrm{C}$ (acetone/ether - $1 / 1$).- ${ }^{1} \mathrm{H}$ NMR (base): $\boldsymbol{\delta}=1.7-2.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35-2.65$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.0-3.25\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.8\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.6-7.3$ $(\mathrm{m}, 6 \mathrm{H}$, aromatic H$), 7.4-7.7(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$)$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}\right.$. 2 HCl).

N-(3-[4-(3-Chlorophenyl)-1-piperazinyl]propyl/-4-oxo-
1,2,3,4-tetrahydro [1,2-a Iindole dihydrochloride (13b)
Yield 44%. Mp. $135-137^{\circ} \mathrm{C}$ (benzene $/ n$-hexane - $1 / 1$, base), $129-133^{\circ} \mathrm{C}$ (acetone, HCl salt).- ${ }^{\mathrm{t}} \mathrm{H}$ NMR (base): $\delta=1.7-2.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35-2.75$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.1-3.35\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.55-4.0\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.3(\mathrm{t}$, $\left.J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.7-7.5(\mathrm{~m}, 8 \mathrm{H}$, aromatic H$), 7.65-7.9(\mathrm{~m}, 1 \mathrm{H}$, aromatic H). - Anal. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{O} \cdot 2 \mathrm{HCl}$).

Binding experiments

Radioligand binding studies with $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors were carried out in the rat brain (the hippocampus and cortex, respectively) according to a published procedure ${ }^{[18]}$. The radioligands used in the binding assays were $\left[{ }^{3} \mathrm{H}\right]-8-\mathrm{OH}$-DPAT ($190 \mathrm{Ci} / \mathrm{mmol}$, Amersham) for $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptors and [$\left.{ }^{3} \mathrm{H}\right]$-ketanserin ($60 \mathrm{Ci} / \mathrm{mmol}$, NEN Chemicals) for $5-\mathrm{HT}_{2 \mathrm{~A}}$ ones. IC50 values were determined from a nonlinear single fit to data obtained from competition experiments in which 10-14 drug concentrations run in triplicate were used. The obtained data were analyzed by an F-test. The K_{i} values were calculated from the Cheng-Prusoff equation ${ }^{[19]}$.

References

[1] Part 21: J. L. Mokrosz, A. Klodzinska, J. Boksa, A. J. Bojarski, B. Duszynska, E. Chojnacka-Wójcik, Arch. Pharm. (Weinheim) 1995, 328, 381-383.
[2] R. N. Brogden, R. C. Heel, T. M. Speight, G. S. Avery, Drugs 1981, 21, 401-429.
[3] A. Georgotas, T. L. Forsell, J. J. Mann, M. Kim, S. Gershon, Pharmacotherapy 1982, 2, 255-265.
[4] J. Maj, W. Palider, A. Rawlów, J. Neural Transm. 1979, 44, 237-248.
[5] E. Przegalinski, A. Lewandowska, J. Neural Transm. 1979, 46, 303312.
[6] J. N. Hingtgen, H. C. Hendrie, M. H. Aprison, Pharmacol. Biochem. Behav. 1984, 20, 425-428.
[7] L. H. Price, D. S. Charney, G. R. Heninger, Psychopharmacology 1986, 89, 38-44.
[8] R.B. Raffa, R. P. Shank, J. L. Vaught, Psychopharmacology 1992, 108, 320-326.
[9] M. F. Hibert, M. W. Gittos, D. N. Middlemiss, A. K. Mir, J. R. Fozard, J. Med. Chem. 1988, 3I, 1087-1093.
[10] R. K. Raghupathi, L. Rydelek-Fitzgerald, M. Titeler, R. A. Glennon, J. Med. Chem. 1991, 34, 2633-2638.
[11] S. Misztal, A. Bojarski, M. Maækowiak, J. Boksa, Z. Bielecka, J. L. Mokrosz, Med. Chem. Res. 1992, 2, 82-87.
[12] R. A. Glennon, R. B. Westkaemper, P.Bartyzel in Serotonin Receptor Subtypes: Basic and Clinical Aspects (Ed.: S. J. Peroutka), Wiley-Liss, New York, 1991, pp. 19-64.
[13] J. L. Mokrosz, M. J. Mokrosz, S. Charakchieva-Minol, M. H. Paluchowska, A. J. Bojarski, B. Duszynska, Arch. Pharm. (Weinheim) 1995, 328, 143-148.
[14] J. Boksa, B. Duszyñska, J. L. Mokrosz, Pharmazie 1995, 50, 220-221.
[15] M. J. Mokrosz, B. Duszynska, A. J. Bojarski, J. L. Mokrosz, Bioorg. Med. Chem. 1995, 3, 533-538.
[16] G. Caliendo, R. Di Carlo, R. Meli, E. Perissutti, V. Santagada, C. Silipo, A. Vittoria, Eur. J. Med. Chem. 1993, 28, 969-974.
[17] J. L. Mokrosz, B. Duszynska, M. H. Paluchowska, Arch. Pharm. (Weinheim) 1994, 327, 529-531.
[18] A. J. Bojarski, M. T. Cegla, S. Charakchieva-Minol, M. J. Mokrosz, M. Mackowiak, S. Misztal, J. L. Mokrosz, Pharmazie 1993, 48, 289-294.
[19] Y.-C. Cheng, W. H. Prusoff, Biochem. Pharmacol. 1973, 22, 30993108.

Received: February 28, 1995 [N001]

[^0]: ${ }^{\text {[a] }}$ The mean value from at least three independent experiments run in triplicate. ${ }^{[b]}$ Selectivity is expressed as a ratio of the K_{i} values.
 ${ }^{[c]} \mathbf{1 b}$ - Etoperidone, $\mathbf{2 b}$ - trazodone. ${ }^{[d]}$ Binding data taken from ref. ${ }^{[7]]}$. ND - not determined.

