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ABSTRACT 
New effective potentials acting between pairs of residues in proteins are 
proposed based on statistics of average distances and standard deviations 
between C atoms of residues in protein tertiary structures. Gaussian functions 
are adopted as analytical forms of the potentials. A protein structure is modeled 
as a chain molecule with a fixed bond length connecting particles approximating 
the effects of amino acid residues. The potentials derived in this study are used 
for conformational sampling of trypsin inhibitor from bovine pancreas. Sampling 
is done with the Monte Carlo simulated annealing method. Sampled confor- 
mations can be classified into a few groups or structural classe:, and one of 
these classes contains structures relatively close (with 7.8-8.7 A root mean 
square [rms] deviation) to the X-ray structure. The native structure exhibits 
relatively low energy. These results denote a rather smooth landscape of the 
present potential energy surfaces. One class of classified structures contains 
nativelike structures, which suggests that the native structure can be predicted 
by further refinement of structures in this class. We discuss other properties and 
the effectiveness of the present potentials for description of protein structures. 
0 1996 by John Wiley & Sons, Inc. 

physics. The methodologies of protein structure 
prediction proposed up to the present may be 
grouped roughly into two categories: ab initio pre- 
dictions and knowledge-based predictions. The ab 
initio predictions attempt to search a protein struc- 
ture by a minimization of total interatomic poten- 
tial energy. This kind of method is based on the 

Introduction 

he prediction of tertiary structures of proteins T from their sequences is one of the most sig- 
nificant unsolved problems in molecular bio- 
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principle that the global minimum energy struc- 
ture of a protein is the native structure.Ir2 The 
main problem of the ab initio predictions is finding 
the global minimum out of the huge number of 
minima on the potential energy hypersurface of a 
protein. Ab initio predictions usually require vast 
amounts of computer time for completion. Thus, 
their applications have been limited to small p e p  
tides with treatable ~ i z e , ~ - ~  and no globular pro- 
tein has been solved so far. 

On the other hand, knowledge-based predic- 
tions are carried out using information about con- 
formational propensities of amino acid residues in 
protein sequences, information which is derived 
from statistical analyses of protein structures de- 
termined by X-ray crystallographic or nuclear 
magnetic resonance (NMR) studies. The method- 
ologies of knowledge-based predictions have been 
developed and applied originally to predict sec- 
ondary structures in  protein^.^,' Interactions 
formed only by four or five consecutive residues 
(i.e., short-range interactions) along a sequence are 
taken into consideration in standard secondary 
structure prediction methods. Hence these tech- 
niques contain an essential limitation in their pre- 
dictability.' 

A method to predict gross features of protein 
tertiary structures which are formed by long-range 
interactions, such as domain structures, has also 
been proposed." This method is based on average 
values of interresidue distances computed from 
known protein structures." Generally, such statis- 
tically estimated distance propensities can be 
transformed into effective potentials or potentials 
of mean force. For example, if we take a position of 
a C" or a C P atom as a representative or material 
point of a residue, pseudo interaction potentials 
can be derived from probability of occurrence of 
contacts between these material points. Such PO- 
tentials are usually used on a latti~e'l-'~ or de- 
fined with inter-CP atomic distances as a set of 
discrete  value^.'^-'^ Covell'2b demonstrated that it 
is possible to obtain protein s t rupres  relatively 
close to native structures (7.5-8.5 A of rms values) 
by a lattice Monte Carlo method with the po- 
tentials defined by Miyazawa and Jernigan." 
Skolnick et al.13b-d,17 succeeded in obtaining with 
their refined lattice model folded protein struc- 
tures which deviated from native structures by 
2.5-4.5 A for designed and natural helical bundles 
with short turns. Although these rms values ob- 
tained by Skolnick et al.13b-d,17 are small, it is still 
uncertain whether their technique is applicable to 

various protein classes in general. Structures from 
a simulation with a lattice model might contain 
unrealistic packing densities." 

Knowledge-based potentials have also been ap- 
plied to detect the native structure in the inverse 
folding pr~blem,''~*~ and their usefulness has been 
demonstrated. (Readers are also referred to ref. 21 
for the inverse folding problem or 3D-1D meth- 
ods.) Furthermore, Rooman et a1F2 classified pro- 
tein backbone structures on Ramachandran plots 
and derived potentials of mean force for these 
structures from the statistics of protein structures. 
With these potentials, they tried to predict tertiary 
structures of protein segments in which local inter- 
actions between residues are dominant and ob- 
tained structures close to native conformations. 

As seen in these studies, positions of C" or C 
atoms seem to be appropriate as representative 
points to describe protein conformations. This 
means that statistics of C" or C atomic positions 
in proteins contain information of effective inter- 
atomic interactions in residues and backbones. 
However, the effective potentials in proteins have 
not yet been sufficiently studied. Such potentials 
should be able to reproduce the properties of both 
structure and dynamics of actual proteins. For 
example, the global minimum of an effective 
potential energy surface should give a structure 
close to the native conformation. Some of the sam- 
pled structures using the potentials proposed by 
Wilson and Doniach are very similar to the native 
~tructure,'~ but it is not clear whether such struc- 
tures are actually near the minimum on the poten- 
tial surface. Another significant property of real 
proteins is the approximate two-state folding- 
unfolding transition. To examine rigorously 
whether a potential function can describe this 
property, we have to carry out sufficiently large 
simulations to calculate thermodynamic properties 
of a protein. 

In the present work, new knowledge-based po- 
tentials are derived from average distances be- 
tween C a  atoms and their standard deviations in 
known protein structures. We try to express a 
potential in the form of a relatively simple analyt- 
ical function. A potential surface expressed by 
an analytical function (not a discrete set of coor- 
dinates) is convenient for analysis of the gross 
features of the potential surface, and prediction 
of a protein structure by search for the global 
minimum is also more tractable. With the new 
potentials, we perform sampling of structures of a 
protein by means of the Monte Carlo simulated 
annealing technique and analyze the structures 
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obtained. This article focuses on the analysis of the 
gross features of our new potential energy sur- 
faces. That is, we attempt to classify low-energy 
structures obtained by the new potentials and ex- 
amine convergence of those structures into a few 
groups. (We will discuss the problem of dynamical 
properties of proteins on the new potentials else- 
where.) We apply the new potentials to the folding 
of BPTI and discuss the properties and effective- 
ness of the potentials. 

Theoretical Background 

The internal potential energy of a protein is 
expressed by a summation of interatomic interac- 
tions as follows: 

The term ui j (y i j )  in the first line of eq. (1) means 
the interaction energy between atoms i and j sepa- 
rated by the distance yij. The total energy of a 
protein is formally decomposed into the three 
terms of eq. (1). The first term is the summation of 
interatomic interactions within each amino acid 
residue. Amino acids are labeled by A, B ,  and so 
on. The second term includes the interactions be- 
tween two atoms (except Ca atoms) that belong to 
different amino acids. The inter-C a atomic interac- 
tions are summed in the third term, where R A ,  
denotes the distance between C" atoms in amino 
acid residues A and B. In eq. (11, a A  means the 
C* atom in the residue A. 

The partition function of this system can be 
formally written as 

Here, d{r i j }  = dr, ,dr , ,  . . . , and p = l/kT. 
If the motion of sidechains in a protein can be 

decoupled from that of the backbone chain (i.e., 
sidechains move fast enough compared with the 

backbone chain), we can perform the integrations 
related to d ( r r j }  and d{rky} separately from those 
related to d(RA,} in eq. (2). That is, the partition 
function, eq. (2), can be rewritten as Zapp as fol- 
lows: 

( 3 )  

Here, F = /i/exp(- P < E , u k l  + c A , u k y ) ) )  
dI r k J 4  r k J .  

Considering a protein as a polymer molecule, 
the typical relaxation time of a backbone structural 
change of a protein, T, can be approximated as23 

Here, N is the number of monomers (i.e., residues, 
in the protein). (In addition, S = 2 in the Rouse 

and S = 9/5 in the Kirkwood approxima- 
t i ~ n . ~ ~ )  On the other hand, the typical relaxation 
time of sidechain motion is on the order of 
10-9-10-6 s. (For example, the typical relaxation 
time of rotation of a phenyl ring in Tyr is on the 
order of at most s.) Therefore, when N is 
large enough, sidechain dynamics can be ex- 
pressed as motion with a frozen backbone chain 
conformation. Conversely, structural change of the 
backbone is regarded as motion in the mean field 
produced by the sidechains. 

Introducing a probability distribution p( RA B ) ,  

an average distance between C" atoms of residues 
A and B is expressed as 

where 

Therefore, 
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where 

and 

Thus, an interresidue potential EAB(RAB) is ob- 
tained formally from the probability distribution 
p(RAB). [As long as we discuss the difference of 
total energy of conformers, the term In Zapp in eq. 
(7)  does not appear explicitly in the calculations.] 
It is expected that EAB depends strongly on types 
of residues A and B. Therefore, instead of an 
explicit form of p( RAB), we use a statistical distri- 
bution, pab, obtained from X-ray structures of pro- 
teins as an empirical model in this article. That is, 
eq. (7) is replaced by 

( l / p )hpab(Rab)  
= -E,b(R,b) - ( 1 / p ) h  Zapp (8) 

In eq. (B), a and b denote the residue types. From 
this equation, the effective potential, &,b, is calcu- 
lated from the distribution function Pab derived 
from X-ray structures. 

In this study, a continuous analytic function is 
introduced for pab. The problem is how the ana- 
lytic form of pab is determined. There is no unique 
answer yet. The simplest and most reasonable form 
is a Gaussian function whose average value and 
standard deviation coincide with the values com- 
puted from the statistics of X-ray structures. This 
simplest case is investigated in the present work. 
Of course, this function corresponds to the approx- 
imation of &,b in eq. (8) by a harmonic potential. 
Furthermore, we also examine the superposition of 
two Gaussian functions as an approximation of pab 
based on the fact that an arbitrary function might 
be approximated by superposition of several 
Gaussian functions. * Gaussian potentials have also 
been used as constraints between residues in the 
homology modeling of proteins by Sali and Blun- 

To transform &, to Eab according to eq. (8), we 
need the value of p as a parameter. In this study, 
we use 1.667 for this value, which corresponds to 

* For example, in electronic structure theory of molecules, a 
Slater-type orbital can be approximated by a superposition of 
several Gaussian functions. See, for example, D. Feller and E. R. 
Davidson, Review in Computational Chemistry, Vol. 1, K. B. 
Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 
1990, pp. 1-43. 

0.6 kcal/mol of kT. As Sippl14” pointed out, the 
choice of temperature here is not critical. p is 
regarded as a multiplicative factor. 

Statistics and Distribution Functions 

The published data of average distances be- 
tween C ”  atoms in proteinsloa are used. In ref. 10, 
the average distances and their standard devia- 
tions have been computed with 42 nonhomologous 
proteins. A range M is defined by the formula 
Ii - jl = k, the separation of two residues i and j 
on a sequence. According to ref. 10a, M = 1 when 
1 I k I 8, M = 2 when 9 I k I 20, M = 3 when 
21 I k I 30, and so on. For each range, an average 
distance ( R : )  and its standard deviation uuf 
have been calculated, where a and b denote amino 
acid types and M a range. Therefore, the distribu- 
tion function depends on a, b, and M-namely, 
p z ( R a b ) .  R E  is a distance between a residue pair 
a and b in a range M. 

Let us assume that is a Gaussian func- 
tion with the average value, ( R E  ), and the stan- 
dard deviation, a,?, as follows: 

p:(R,b> = (I/& r a y )  
x exp[ - ( R: - ( R E  >12/2(  uaf 1’1 

(9) 

We refer to the distribution function expressed by 
eq. (9) as a single Gaussian distribution function. 

Next we examine a distribution function in the 
following form: 

p f ( R a b )  
1 

= c ( C J G  uj:) 
i = l  

xexp( - ( R E  - AEb12/2( f l j :  1’) (10) 

In eq. (lo), C i ,  ajE, and AEb are arbitrary parame- 
ters to be determined to give observed values of 
( R : ) ,  and uaf. Here, 0 I Ci  I 1.0. We take the 
case of I = 2 in this article. Then 

Here, C ,  = 1 - C, .  
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Here, 0 < D ,  < 1.0 and D ,  = 1 - D,. Thus, the 
parameters to be adjusted are C,, 01, and D,. We 
always take the values of these parameters such 
that A X h  s AYab and I U2:b. We call the po- 
tential function defined by eq. (10) a double Gauss- 
ian potential. 

A Model of a Protein 

The following model of a protein is adopted in 
this article. We consider a chain molecule consist- 
ing of N particles. Each pair of consecutive parti- 
cles is c9nnected by a virtual bond with the length 
of 3.8 A. Each of these particles represents all 
effects of an amino acid in the protein. Any values 
between 0 and 7r radians can be taken as bond 
angles and between 0 and 27r as dihedral angles. 
Potentials defined by eq. (9) or (10) act among 
these particles, but interaction energy is adjusted 
to become a certain large value, Erep, i? the region 
of the interparticle distance of R 5 3.8 A. An artifi- 
cial potential acts for each residue of disulfide 
pairs in the following form: 

(14) E,, = k s s ( r  - r , , )  

where r is the distance between two particles to 
form a disulfide boFd. We set Erep =$O kcal/mol, 
k, ,  = 50 kcal/mol A’, and r , ,  = 5.5 A in this arti- 
cle. 

2 

Sampling Procedure 

To investigate characteristics of the potentials, 
sampling of conformations of a protein was carried 

out by means of the Monte Carlo simulated an- 
nealing method. The Metropolis algorithmz7 was 
employed in this study. Starting with a structure 
with random bond angles and dihedral angles, 
each bond angle and dihedral angle of the struc- 
ture was changed randomly in the interval of 0-7r 
and 0-27r, respectively, during the course of the 
simulation. The Monte Carlo procedure included 
changes of bond angles and dihedral angles of all 
residues. (In the present work, we did not take 
avoidance of steric crashes into account in the 
Monte Carlo movements.) This procedure was iter- 
ated 5000 times while decreasing the relative tem- 
perature, kT,  from 100 to 0.1. This temperature 
range was chosen empirically. In the relative tem- 
perature range 100-5, an acceptance ratio of 
60-40% could be obtained. We made a number of 
runs of this procedure, and 50 structures with 
energy values within 500 kcal/mol from the low- 
est were selected as sampled structures. Then we 
analyzed the final results. As a test, the present 
potentials were applied to trypsin inhibitor from 
bovine pancreas (BPTI). 

Results 

THE CASE OF A SINGLE GAUSSIAN 
DISTRIBUTION FUNCTION 

In Table I, we show the average values of en- 
ergy, rms deviation from the X-ray structure, and 
radius of gyration of 50 structures of BPTI ob- 
tained by the Monte Carlo simulation described in 
the previous section. The energy of the native 
structure was approximated in this work as the 
value of the slightly relaxed conformation pro- 
duced from the X-ray structure by 10 Monte Carlo 

TABLE 1. 
Properties of the 50 Sampled Structures by the 
Single Gaussian Function and the Relaxed 
Native Structure. 

Rms 
Radius Dfviation 

of (A) from 
Energy Gyr!tion the X-ray 

(kcal/ mol) (A) Structure 

Sampled structures 

Relaxed native 
(average) 571 4.8 12.2 10.73 

structure 3094.4 10.7 0.75 
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iterations at T = 10. We observed no important 
change in tertiary structure after this relaxation. 
The rms deviation of the rclaxed structure from 
the X-ray structure was 0.75 A. Radii of gyration of 
the X;ray and the relaxed structures are 10.6 and 
10.7 A, respectively. This relaxed structure is re- 
ferred to as the relaxed native structure. Figures 
l(a) and l(b) illustrate the X-ray and relaxed na- 
tive structures of BPTI. The values of the energy, 
the radius of gyration, and the rms deviation of 
the relaxed native structure of BPTI are also pre- 
sented in Table I. We notice from this table that the 

FIGURE 1. (a) C" trace of the X-ray structure of BPTI. 
(b) C" trace of the relaxed native structure of BPTI. 

energy of the relaxed structure is remarkably low 
compared with the average energy of the 50 struc- 
tures. The average valte of the radius of gyration 
of 50 structures is 12.2 A, which is 15% larger than 
that of the X-ray structure. As expected, the native 
structure is rather compact. 

Kawai et al? proposed a technique to classify 
conformations of peptides and proteins generated 
by the Monte Carlo simulated annealing method. 
According to this technique, two conformations 
are classified to be in the same set if this pair of 
conformations deviates from each other by less 
than a cutoff rms distance. If we take too small a 
cutoff value, only a few of the generated confor- 
mations are put in the same set, and there are 
many conformations that do not belong to any set. 
On the other hand, if we take too large a cutoff, 
many conformations belong to more than one set 
simultaneously. Therefore, we have to determine 
the cutoff rms distance carefully so that generated 
conformations, as much as possible, belong to one 
and only one of classes (i.e., no conformation be- 
longs to two classes c~ncurrent ly~~ ). We applied 
this method to our problem. 

As a result, among the 50 sampled conforma- 
tions, we could choose six structures in which any 
two structures deviate each other if we take 8.0 A 
as the cutoff rms value. We refer to these six 
structures as core structures. Core structures in a 
class are selected so that as many other sampled 
structures fall into a class as possible. We could 
find 13 other structures similar to at least one of 
these six structures within the cutoff rms deviation 
of 8.0 A. Besides these 19 structures, we can choose 
six other core structures each resembling the oth- 
ers by less than the same cutoff rms distance; 15 
more structures can be picked up to be similar to 
at least one of those six structures within the same 
cutoff value. Thus, a majority (19 + 21 = 40) of the 
50 structures can be classified roughly into two 
classes. We call the former class I and the latter 
class 11. There is no common structure between 
classesoI and 11. Therefore, the rms cutoff distance 
of 8.0 A is appropriate for the present classification. 

Table IIa represents the rms distances between 
the core structures in each class. We show the rms 
deviation between conformations from different 
classes in Table IIb. Each conformation is labeled 
by a number I-l,I-2 and so on, where, for example, 
1-1 means the conformation 1 in class I. With this 
table, we can confirm that the core conformations 
in each class resemblz one another within the 
cutoff distance of 8.0 A. The corresponding aver- 
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TABLE Ila. 
Rms Distances (A) between Core Conformers in 
Classes Sampled by the Single Gaussian Function. 

Class I 

1-1 1-2 1-3 1-4 1-5 1-6 

1-1 - 7.30 7.20 6.08 6.39 7.08 
1-2 - 5.43 7.28 5.50 6.96 
1-3 - 7.83 6.23 6.98 
1-4 6.59 7.85 

7.35 
- 

- 1-5 
1-6 - 
Average: 6.80 

Class II 

11-1 11-2 11-3 11-4 11-5 11-6 

11-2 - 6.80 7.33 6.01 7.13 7.75 
11-2 - 7.74 7.20 7.94 7.88 
11-3 6.59 7.74 7.53 
11-4 6.84 6.99 
11-5 5.92 

Average: 7.1 6 

- 

- 

- 

11-6 - 

Each core conformer is labeled by Roman and Arabic nu- 
merals (e.g., 1-1 denotes the conformer 1 in class I). 

TABLE Ilb. 
Rms Distances 6) between Core Conformers from 
Classes I and II Sampled by the Single 
Gaussian Function. 

1-1 1-2 

11-1 13.50 13.52 
11-2 13.82 14.91 
11-3 14.02 13.97 
11-4 14.17 13.82 
11-5 12.65 11.78 
11-6 12.37 12.97 
Average: 13.21 

1-3 

13.58 
13.28 
12.68 
13.02 
12.88 
13.75 

1-4 1-5 

12.61 13.01 
13.31 13.92 
13.17 14.15 
13.38 13.78 
12.51 11.91 
12.40 12.74 

1-6 

13.32 
13.03 
13.85 
13.53 
12.48 
12.92 

FIGURE 2. (a) Superposition of C" traces of the core 
structures in class I sampled by the single Gaussian 
function. (b) Superposition of C" traces of the core 
structures in class II sampled by the single Gaussian 
function. 

age rms values are 6.80 A and 7.16 A, respectively. 
On the other hand, there is less similarity between 
any of two structures from different classes, in 
which the average rms value is 13.21 A. 

Figures 2(a) and 2(b) indicate the superposition 
of the six core structures of class I and the six core 
structures of class 11, respectively. The properties 
of these core structures are summarized in Table 
111. There is no remarkable difference between 
classes I and I1 in the average values of energy and 
radii of gyration. However, the rms values from 

the X-ray structure denote the obvious difference 
between classes. The average rms value of the core 
structures in class I from the X-ray structure is 
$learly smaller than that of class I1 (9.06 and 11.68 
A, respectively). The values of the rms deviation of 
three of the core members in class I fr$m the X-ray 
structure fall in the range of 8.2-8.7 A (Table 111). 
One more conformationoin class I (not a core struc- 
ture) also shows 8.61 A of rms deviation. These 
structures are closest to the X-ray conformation. 
These facts attest to the relative resemblance of 
conformations in class I to the X-ray structure. 
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TABLE 111. 
Properties of the Core Structures in Classes I 
and II Derived by the Single Gaussian Function. 

Rms 
Deviation 
from the 

Energy Radius of X-ray 
(kcat/ moll Gyration (& Structure (A) 

Class I 
1-1 
1-2 
1-3 
1-4 
1-5 
1-6 

Average 
Class I1 

11-1 
11-2 
11-3 
11-4 
11-5 
11-6 

Average 

5820.4 
571 1 .O 
5807.5 
5766.8 
5637.5 
5801 .O 
5757.4 

5882.5 
5868.6 
5601.9 
5463.5 
5605.4 
5652.7 
5679.1 

12.1 
12.5 
12.0 
12.1 
11.9 
11.9 
12.1 

12.0 
12.2 
13.0 
12.7 
12.4 
12.0 
12.4 

8.17 
9.62 
9.59 
8.44 
9.88 
8.63 
9.06 

12.08 
12.57 
11.72 
11.82 
10.89 
11.0 
11.68 

Thus, it is demonstrated that the sampled struc- 
tures with the present potential function are mainly 
classified into two classes. That is, the sampled 
conformations converge into two conformational 
families based on rms deviations. In particular, 
from the structural similarity of the members in 

class I to the native structure, we expect that some 
of the structures in class I can be energetically 
relaxed to conformations close to the relaxed na- 
tive structure taking the relatively low energy of 
the relaxed native structure into account. How- 
ever, both the average values of energy and radius 
of gyration of the sampled structures in class I are 
larger than the native values. This difficulty of the 
proximity to the native values by the Monte Carlo 
simulated annealing method suggests that the 
present potential surface still contains high 
complexity. 

THE CASE OF A DOUBLE GAUSSIAN 
DISTRIBUTION FUNCTION 

We chose the values of the parameters in eqs. 
(12) and (13) as C, = 0.7, D, = 0.3, and a = 0.8. 
These values have been adjusted to obtain values 
of rms deviations from X-ray structure and radii of 
gyration as small as possible. The potential func- 
tion attains asymmetric shape compared with the 
symmetric form of a single Gaussian case. As an 
example, Figure 3 shows the profile of the double 
Gaussian potential defined by eqs. (8) and (10) 
for the amino acid pair Ala-Ala in the range 3 
(21 5 k I 30). Twenty-five structures were sam- 
pled with the double Gaussian function using the 
same procedure as with the single Gaussian case. 
Table rV summarizes the average values of energy, 
radii of gyration, and rms deviation from the X-ray 
structure. As with the single Gaussian case, this 

1 . o - I /  

0.0 10.0 20.0 30.0 40.0 50.0 60.0 

Interrwidue D I O ~ U ~ ~ ~ ( R & ~ M A )  

FIGURE 3. The profiles of the single and double Gaussian potentials defined by eq. (8) for the amino acid pair 
Ala-Ala in the range 3 (M = 3, i.e., 21 I k I 30). The average distance and standard deviation are 19.71 and 9.08, 
respectively. 
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TABLE IV. 
Properties of the 25 Sampled Structures by the 
Double Gaussian Function and the Relaxed 
Native Structure. 

Rms 
Radius Dfviation 

of (A) from 
Energy Gyration the X-ray 

(kcal/ mol) (A) Structure 

Sampled structures 

Relaxed native 
(average) 5786.5 11.7 10.65 

structure 3226.4 10.6 0.15 

double Gaussian function leads to a low energy of 
the relaxed native structures compared to the aver- 
age energy of the sampled structures. 

Again, we tried to classify the 25 structures into 
a few classes using the 8.0-A cutoff distance. As a 
result, the sampled structures could be classified 
into two classes. When we take two conformers as 
core structures of class I, the class contains seven 
conformations as a whole. These two structur$s are 
also similar to the X-ray structure by 7.8-8.3 A rms 
deviation (Table VI). T%s class contains another 
conformation with 8.34-A rms deviation from the 
X-ray structure. Those three structures show the 
smallest rms distances from the native structure 
among the 25 generated structures in the present 
simulations. As class 11, four structures are recog- 
nized as core members. We can find five other 
structures that resemble at least one of four core 
structures within the cutoff rms distance. 

The values of the rms deviation between core 
conformations within each class are shown in Table 
Va. The conformational differences among the core 
structures belonging to different classes are pre- 

0 

TABLE Va. 
Rms Distances (A) between Core Conformers in 
Classes Sampled by the Double Gaussian Function. 
~~ ~ ~~ 

Class I 
11-1 vs 11-2: 7.99 
Class II 

1-1 1-2 1-3 1-4 

1-1 - 7.27 7.09 7.53 

1-3 
1-4 

1-2 - 7.06 5.78 
7.28 - 
- 

Average: 7.00 

TABLE Vb. 
Rms Distances (A) between Core Conformers from 
Classes I and II Sampled by the Doubled 
Gaussian Function. 

1-1 1-2 1-3 1-4 

11-1 10.69 9.48 10.08 9.30 
11-2 1 1.90 11.43 9.74 10.36 
Average: 10.38 

sented in Table Vb. Again, there is no common 
structure between conformations in class I and 
those in Class 11. The conformational differences 
between classes I and I1 are clear (i.e., the average 
rms deviation between them is 10.38 A). 

The average values of the properties of the core 
structures are summarized in Table VI. The aver- 
age rms deviation of the core structures in class I 
from the X-ray structure is 8.06 A, and this is 
clearly smaller than that for class 11. Thus, the 
proximity of the sampled structures to the native- 
like structures in class I is somewhat improved in 
tpe double Gaussian function compared to the 9.06 
A in Table 111. The average value of radii of gyra- 
tion, 11.7, is slightly smaller than the correspond- 
ing value (12.2) of the single Gaussian potential, as 
shown in Tables I and IV. Moreover, as seen in 
Table VI, the average radius of gyration of class I 
(11.05) is clearly smaller than that of class I1 (11.7). 
The 11.05 value is close to the native value, 10.6 
(Table VI). 

It is interesting to compare the structures ob- 
tained with the single Gaussian function to those 

TABLE VI. 
Properties of the Core Structures in Classes I and II 
Derived by the Double Gaussian Function. 

Rms 
Deviation 
from the 

Energy Radius of, X-ray 
(kcal/ mol) Gyration (A) Structure (A) 

Class I 
1-1 
1-2 

Average 
Class II 

11-1 
11-2 
11-3 
11-4 

Average 

591 0.8 
5830.5 
5865.7 

5787.0 
5852.2 

5842.1 

5977.3 

5751.9 

11.0 
11.1 
11.05 

12.0 
11.9 
11.0 

11.7 
11.8 

7.88 
8.23 
8.06 

11.15 
11.04 
10.92 
10.59 
10.93 

234 VOL. 17, NO. 2 



C" ATOMIC POTENTIALS 

TABLE VII. 
Average Rms Distances (A) between Structures 
in Classes Defined by the Single and Double 
Gaussian Functions, Respectively. 

SGI SGll 

DGI 7.79 12.05 
DGll 11.24 8.59 

Classes are labeled by SGI, DGI, and so on. For example, 
SGI and DGI denote the classes I defined by the single and 
double Gaussian functions, respectively. 

derived from the double Gaussian potential sur- 
face. We refer to the classes I and I1 derived by the 
single Gaussian function as SGI and SGII, respec- 
tively, and the classes I and I1 defined by the 
double Gaussian function as DGI and DGII, re- 
spectively. Table VII shows average rms distances 
between structures. The rms distances between 
%I and DGI$nd between SGII and DGII are 7.99 
A and 8.59 A, respectively, suggesting that SGI 
and SGII correspond to DGI and DGII, respec- 
tively. These results imply that sampled conforma- 
tions on both single and double Gaussian potential 
functions converge into the same two conforma- 
tional classes. 

Discussion 

As described in the previous section, the sam- 
pled structures of BPTI by the Monte Carlo simu- 
lated annealing method can be classified into a few 
classes with both the single and double Gaussian 
functions. This implies that the gross shape of the 
landscape of each potential function can be ex- 
pressed by only a few wells. That is, each of the 
potential functions can be approximated by a 
smooth surface, especially at high temperatures. 
The degree of apprcximation is reflected by the 
criterion of the 8.0-A rms distance used for the 
classification of the sampled structures. This value 
is expected to be improved by optimization of the 
cooling schedule in the Monte Carlo simulated 
annealing procedure. As seen in Table VII, the 
structures of classes I and I1 in the case of the 
single Gaussian function appear to correspond to 
classes I and I1 on the double Gaussian potential 
surface. As expected, the corresponding potential 
wells on both the surfaces appear to be fairly close. 
It is interesting that one of these classes of each 
potential ,functicn contains conformations close 
(with 7.8 A-8.7 A rms) to the X-ray structure, and 

the relaxed native structure has extremely low 
energy compared with the sampled structures. 
Thus, it is expected that, if conformations of this 
class are energetically refined further, the native- 
like structures will be attainable. 

These properties of the present potential energy 
surface seem to be related to the convergence of a 
protein to its native structure. However, the con- 
vergence of the sampled conformations into a few 
classes is somewhat crude, especially with the 
single Gaussian potential function. For example, 
the average value of the rms deviation of the 
?tructures in class I from the X-ray structure is 9.06 
A (Table 111). This value is relatively large, al- 
though it is smaller than the corresponding value 
of class 11. This rms indicates that the shape of the 
potential surface is still rather rugged. The situa- 
tion has been improved to some degree in the 
double Gaussian function. We obtained a smaller 
average rms deviation of the core structures as 
8.06 A in the class I sampled by the double Gauss- 
ian function (Table VI). This value is close to the 
result of a lattice Monte Carlo simulation carried 
out by Covell,lZb Skolnick and K~linski,'~" and 
Godzik et al?' Of course, the value in the present 
analysis cannot be compared directly with those 
values because their values have been obtained 
from the finally optimized conformations, whereas 
our value is taken from the average of the values 
of the core structures. The value in this study will 
be refined further. 

As pointed out, the single Gaussian potential 
function corresponds to the harmonic approxima- 
tion of the potentials. On the other hand, the pre- 
sent double Gaussian version includes an asym- 
metric form of the function, as shown in Figure 3. 
We think that this mimics correction of the anhar- 
monicity of the real potentials. Therefore, nonlin- 
earity of the potential function seems to smooth 
the landscape and makes the convergence of the 
sampled structures better. This effect is also re- 
flected in the smaller values of the radii of gyra- 
tion of the sampled structures on the double 
Gaussian potential surface. In the single Gaussian 
case, the average value of rtdius of gyration of the 
structures in class I is 12.2 A, which is rather large 
compared with the native value, 10.6 A. This dif- 
ference suggests that a chain has difficulty being 
compact and is trapped in an expanded conforma- 
tion because of the fairly rugged single Gaussian 
potential surface. With the double Gaussian func- 
tion, the average radius of gyration value is smaller 
(11.7 vs. 12.21, suggesting that a conformation on 
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this potential energy surface tends to be more 
compact than on the single Gaussian surface be- 
cause of the relative smoothness of the double 
Gaussian surface. It is interesting that the average 
radius of gyration of class I is closer to the native 
value in the double Gaussian simulations. 

In the present work, one of our main objectives 
was to understand the gross features of the land- 
scape produced by the potential functions. There- 
fore, we stopped each Monte Carlo simulation at 
5000 iterations. It is expected that further simula- 
tions for a structure in each class would lead to a 
more refined structure. However, we checked that 
a simulation with 20,000 iterations gives essen- 
tially the same results as 5000 simulations. There- 
fore, to obtain a more refined structure in a class, 
we should perform much more than 20,000 itera- 
tions, perhaps on the order of lo5. We are cur- 
rently working to make larger simulations for the 
structures in these classes. 

In an application of the present method to pro- 
tein structure prediction, the resolution of the clas- 
sification of sampled conformations should be im- 
proved to at least around 4.0 A.'2b,20,28 To attain 
this level of the resolution, we would need to (1) 
increase the number of the simulation steps, (2) 
take more detailed statistics of average distances, 
or (3)  improve the distribution function by increas- 
ing the number of Gaussian functions superposed. 
For example, the present treatment does not show 
clear secondary structure formation in the struc- 
tures [Figs. 2(a) and 2(b)]. This is because we used 
the statistics averaged over the range 1 I k I 8. 
Therefore, the present potentials are insensitive to 
the formation of secondary structures. This prop  
erty will be improved by refinement of the statis- 
tics of the range 1 I k I 8. 

We found that the native structure corresponds 
to a very low energy (i.e., the secondary structures 
decrease the energy of the protein even with the 
present potentials). On the other hand, Saitoh et 
al.29 have pointed out that the consideration of 
secondary structures in building of a protein ter- 
tiary structure does not remarkably improve rms 
deviation of a built-up structure from the native 
structure. 

In the present study, we take C" atoms as the 
representative particles describing a protein's ter- 
tiary structure. Further improvement might be 
achieved when we treat more detailed statistics 
(e.g., considering average distances between C 
atoms and between centers of mass of residues 
simultaneously). These improvements can be car- 
ried out by use of multivariable Gaussian func- 

tions. It would also be interesting to increase the 
number of Gaussian functions superposed. How- 
ever, the number of parameters also considerably 
increases. We should seek criteria to determine the 
optimum values of the parameters. Then improve- 
ment of the situation might take place more than 
we saw in the passage from the single to double 
Gaussian function. Even at the present stage, our 
method will help reduce conformational space of a 
protein by the classification of generated structures 
into a few classes of the backbone. After that, 
further refinement of a whole protein structure can 
be performed by detailed Monte Carlo or molecu- 
lar dynamics calculation within the restricted con- 
formational space. 

As shown in this article, knowledge-based po- 
tentials of mean force are efficient in modeling 
protein structures to some extent. This denotes 
that motion of a backbone of a protein can be 
decoupled from that of sidechains in eq. (3)  to a 
certain degree. During folding of a protein with a 
high degree of freedom of a backbone, this approx- 
imation is fairly valid. Deviation of motion of a 
backbone and sidechains from this approximation 
may become large when the degree of freedom is 
almost lost at the final stage of protein folding. 
This stage might include transition from a molten 
globule to the native state.30 However, the fact 
that knowledge-based potentials of mean force are 
generally effective to describe a protein tertiary 
structure suggests the validity of this approxima- 
tion in a major part of the process of protein 
folding. 

Of course, as a final step of a tertiary structure 
prediction with knowledge-based potentials, re- 
finement of the structures should include the ef- 
fects of sidechain conformations. Deviation of a 
final structure predicted by such potentials from 
the native structure denotes the roughness of this 
approximation. On the other hand, small peptide, 
for which we cannot decouple the motion of the 
main chain from that of sidechains, does not form 
a unique structure but exists in a conformational 
ensemble. We can empirically infer that the mini- 
mum number of residues required to fold a pro- 
tein into its unique structure is 40-50. 

In the present study, a continuous coordinate 
system is adopted to express potentials of a pro- 
tein. Therefore, the present model is free from 
possible fictitious effects of lattice models of pro- 
teins. The characteristic of our method is an ap- 
proximation of the potential function of proteins 
by an analytical function. Hence the calculation is 
considerably simplified compared to lattice mod- 
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els and to models using discrete potential sets. It is 
relatively easy to apply the present technique to a 
dynamical problem of a protein. We are currently 
working on analysis of dynamics of a protein on 
the present potential energy surfaces. We will try 
to improve our potentials by increasing of the 
number of Gaussian functions superposed. Then 
we may expect that the accuracy of the present 
method will be improved. 

1. 

2. 

3. 

4. 

5. 

6. 
7. 
8. 

9. 
10. 

References 

(a) C. B. Anfinsen and H. A. Scheraga, Adv. Prot. Chem., 29, 
205 (1975); (b) G. Nemethy and H. A. Scheraga, Quart Rev. 
Biophys., 10, 239 (1977). 
H. A. Scheraga, Review in Computational Chemistry, Vol. 3, 
K. B. Lipkowitz and D. 8. Boyd, Eds., VCH Publishers, New 
York, 1992, p. 73. 
(a) M. Vdsquez and H. A. Scheraga, J. Biomol. Struc. Dyn., 5, 
757 (1988); (b) L. Piela and H. A. Scheraga, Biopolymers, 26, 
S33 (1987); (c) D. R. Ripoll, L. Piela, M. VBsquez, and H. A. 
Scheraga, Proteins, 10, 188 (1991); (d) Z. Li and H. A. 
Scheraga, Proc. Natl. Acad. Sci. U.S.A., 84, 6611 (1987); (e) L. 
Piela, J. Kostrowicki, and H. A. Scheraga, J. Phys. Chem., 93, 
3339 (1989). 
(a) H. Kawai, T. Kikuchi, and Y. Okamoto, Protein Eng., 3, 
85 (1989); (b) Y. Okamoto, T. Kikuchi, and H. Kawai, Chem. 
Lett., 1992, 1275; (c) H. Kawai, Y. Okamoto, M. Fukugita, 
T. Nakazawa, and T. Kikuchi, Chem. Lett., 1991, 213. 
B. von Freyberg and W. Braun, J. Comp. Chem., 12, 1065 
(1991). 
S. R. Wilson and W. Cui, Tetrahedron Lett., 29, 4373 (1988). 
P. Y. Chou and G. D. Fasman, Adv. Enzymol., 47,45 (1978). 
J. Gamier, D. J. Osguthorpe, and B. Robson, J. Mol. Biol., 
120, 97 (1978). 
K. Nishikawa, Biochem. Biophys. Acta, 748, 285 (1983). 
(a) T. Kikuchi, G. NGmethy, and H. A. Scheraga, J. Protein 
Chem., 7, 427 (1988); (b) T. Kikuchi, G. NCmethy, and H. A. 

Scheraga, J. Protein Chem., 7, 473 (1988); (c) T. Kikuchi, G. 
NCmethy, and H. A. Scheraga, J. Protein Cbem., 7, 491 
(1988). 

11. S. Miyazawa and R. L. Jemigan, Macromolecules, 18, 534 
(1985). 

12. (a) D. G. Covell and R. L. Jemigan, Biochemistry, 29, 3287 
(1990); (b) D. G. Covell, Proteins, 14, 409 (1992); (c) D. G. 
Covell, J. Mol. Biol., 235, 1032 (1994). 

13. (a) J. Skolnick and A. Kolinski, Science, 250, 1121 (1990); (b) 
A. Kolinski, A. Godzik, and J. Skolnick, J. Chem. Phys., 98, 
7420 (1993); (c) A. Kolinski and J. Skolnick, Proteins, 18, 338 
(1994); (d) A. Kolinski and J. Skolnick, Proteins, 18, 353 
(1994). 

14. (a) M. J. Sippl, J. Mol. Biol., 213, 859 (1990); (b) G. Casari 
and M. J. Sippl, J. Mol. Biol., 224, 725 (1992). 

15. C. Wilson and S. Doniach, Proteins, 6, 193 (1989). 
16. S. H. Bryant and C. E. Lawrence, Proteins, 16,92 (1993). 
17. J. Skolnick, A. Kolinski, C. L. Brooks 111, A. Godzik, and A. 

18. L. M. Gregoret and F. E. Cohen, J. Mol. Biol., 219,109 (1991). 
19. D. T. Jones, W. R. Taylor, and J. M. Thomton, Nature, 358, 

86 (1992). 
20. A. Godzik, A. Kolinski, and J. Skolnick, J. Mol. Biol., 227, 

227 (1992). 
21. R. Liithy, J. U. Bowie, and D. Eisenberg, Nature, 356, 83 

(1992). 
22. (a) M. J. Rooman, J.-P. A. Kocher, and S. J. Wodak, J. Mol. 

Biol., 221, 961 (1991); (b) M. J. Rooman, J.-P A. Kocher and 
S. J. Wodak, Biochemistry, 31, 10226 (1992); (c) M. J. Rooman 
and S. J. Wodak, Biochemistry, 31, 10239 (1992). 

23. P.-G. de Gennes, Scaling Concepts in  Polymer Physics, Come11 
University Press, Ithaca and London, 1979, p. 180. 

24. P. E. Rouse, J. Chem. Phys., 21, 1273 (1953). 
25. J. Kirkwood and J. Riseman, J, Chem. Phys., 16, 565 (1948). 
26. A. Sali and T. L. Blundell, J. Mol. Biol., 234, 779 (1993). 
27. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and 

28. P. Correa, Proteins, 7, 366 (1990). 
29. S. Saitoh, T. Nakai, and K. Nishikawa, Proteins, 15, 191 

30. K. Kuwajima, Proteins, 6, 87 (1989). 

Rey, Curr. B i d ,  3, 414 (1993). 

E. Teller, J. Chem. Phys., 21, 1087 (1953). 

(1993). 

JOURNAL OF COMPUTATIONAL CHEMISTRY 237 




