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A B S T R A C T

Antigenic drift causes number of mutations in neuraminidase protein of H1N1 swine influenza virus. We

analyzed neuraminidase mutations in H1N1 strains distributed over six continents, at both the sequence

and structural level. Mutations in the nearby residues of the drug binding site play crucial role in the

binding affinity of the drug with the protein. For this purpose, mutant models were generated for the

neuraminidase protein from 34 pandemic H1N1 isolates and docking were performed with zanamivir

drug. Multiple sequence alignment (MSA) and variations in docking score suggest that there are

considerable changes in the binding affinity of neuraminidase with zanamivir, which leads to probable

ineffectiveness of zanamivir in the isolated samples of pandemic H1N1 collected from quite a few

countries. To further evaluate the effectiveness of the antiviral drugs, we derived, calibrated and

analyzed an ordinary differential equations based mathematical model for H1N1 infection dynamics and

drug mediated virus deactivation.
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1. Introduction

Swine flu, one of the most treacherous diseases, is a respiratory
ailment of pigs caused by type A influenza virus that could lead to
complications such as bronchitis and pneumonia in human. Swine
flu viruses have the capability to evolve continuously, when
viruses from different species infect pigs, the virus undergoes
reassortment and the new genome that was an example of triple
reassortant from swine, avian and human influenza viruses (Wang
and Palese, 2009). The H1N1 virus is contagious, spreading easily
from one person to another and from one country to another. In the
recent 2009 influenza pandemic, the H1N1 influenza virus causing
the outbreak had evidently never been observed before and
described as having components of human, avian and swine
sources in its genome (Wang and Palese, 2009). Swine serve as a
mixing-vessel (Webby et al., 2000), since they are susceptible to
infection with viruses from birds and other mammals, thereby
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providing an opportunity for genetic reassortment between
influenza viruses during a mixed infection (Altmuller et al.,
1992). H1N1 are single-stranded, negative sense, segmented RNA
viruses that belong to the family Orthomyxoviridae (Scholtissek
et al., 1993). It is an enveloped RNA virus containing eight
segments of negative-sense RNA (Webster et al., 1992), which
encode 11 proteins, including hemagglutinin (HA), neuraminidase
(NA), matrix 1 (M1), matrix 2 (M2), nucleoprotein (NP),
nonstructural proteins (NS1 and NS2), and a polymerase complex
(PA, PB1, PB1-F2 and PB2) (Mesecar and Ratia, 2008). Influenza A
virus is further classified into subtypes according to the sixteen
serotypes of hemagglutinin (H1 to H16) and 9 serotypes of NA (N1
to N9) surface glycoprotein antigens. Out of two agonist surface
proteins: the HA is the receptor-binding and membrane fusion
glycoprotein and the NA is a receptor-destroying enzyme (Brown,
2000). Currently, variants of three predominant HA-NA combina-
tions of causative influenza viruses (H1N1, H3N2, and H1N2) are
circulating in different swine populations throughout the world
(Olsen, 2002; Schweiger et al., 2002). Most of the swine influenza
virus strains are susceptible to two FDA-approved drugs,
oseltamivir phosphate (Tamiflu) and zanamivir (Relenza). NA
was chosen as a suitable drug target as it plays a major role in
influenza virus propagation (Burmeister et al., 1991; Taylor and
Vonitzstein, 1994). Zanamivir is a NA inhibitor, with potent,
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specific antiviral activity, has been shown to be effective against a
number of strains of influenza tested, including those which shows
the resistance to oseltamivir. It is found to be effective against wide
range of influenza A and B viruses both in vitro and in laboratory
animals by preventing release of progeny virions budding out from
cell surface (Ferraris et al., 2005; Colman, 1999; Barnett et al.,
2000). Administration by inhalation results in direct delivery to the
respiratory tract, the principal site of viral replication (Monto et al.,
2000). Mutation in a nearby residue of the drug binding site plays a
vital role in the binding affinity of the drug with the corresponding
protein. Random mutation and single amino acid substitution in
HA and NA proteins causes antigenic drift and occurs during viral
replication (Scholtissek et al., 1993). The ability of influenza virus
to undergo continuous and progressive amino acid change may
also cause an inappropriate binding of the drug. Variation in
binding sites may block drug binding domains. The H274Y NA
mutation in H1N1 resulted in reduced sensitivity in oseltamivir,
also the H274N point mutation gave resistance to zanamivir (Ives
et al., 2002). Hurt et al. (2009) have analyzed Gln136Lys
neuraminidase mutation that caused approximately 300 fold-
reduction of zanamivir susceptibility. Wang and co-workers also
reported alteration in the sensitivity for both oseltamivir and
zanamivir in the influenza A/WS/33 (H1N1) virus variant carrying
a His274Tyr mutation in the NA protein. Other mutations, such as
His274Gly, His274Ser, His274Asn and His274Gln were also shown
to reduced sensitivity to zanamivir (Wang et al., 2002). As the
human influenza strains are repeatedly evolving via these point
mutations, the virus is able to escape from the limited antibody
repertoire of the human immune response. Antigenic drift rate is
sufficiently high in HA and NA and enough to create several
antigenic variants each year (de Jong et al., 2007). Monitoring
Fig. 1. Interaction of zanamivir drug with the NA protein of 1918 H1N1. (A) Contact map b

cavity of NA. (B) Hydrogen bonds (pink dashed lines) and (C) hydrophobic interactions

residues involved in the interactions are labeled. (For interpretation of the references to
antiviral susceptibility is required to take account of the probable
emergence of drug-resistant variants. As zanamivir is the only
approved potential drug therapy in case of oseltamivir-resistant
viral variants, detail investigation to analyze all the circulating
mutations in NA that can result in the change in drug susceptibility
is of enormous importance. In the present work, we analyzed the
NA protein variants of H1N1 collected from all 6 continents for
possible drift in the zanamivir binding domain and its impact on
drug resistibility in the virus. A mathematical model was also
derived and calibrated which consists of a series of ordinary
differential equations (ODE) describing the drug mediated virus
deactivation and the dynamics of the infectious process.

2. Materials and methods

2.1. Sequence collection

With the intention of analyzing mutation pattern in pandemic
H1N1 NA protein, sequences were retrieved from the EpiFlu
database (http://platform.gisaid.org/). We selected sequences
covering 86 countries from all 6 continents for global mutational
analysis. We collected all the NA protein sequences submitted in
the database, and selected one representative sequence from each
country (Supplementary Table 1) as we did in our previous work
(Gupta et al., 2010).

2.2. Structural analysis of 1918 H1N1 neuraminidase complex with

zanamivir

For the structural analysis of the binding site, the crystal
structure of neuraminidase A/Brevig Mission/1/1918 H1N1 strain
etween different atoms of zanamivir with that of amino acid residues in the binding

(green dashed lines) of drug with amino acid residues are shown. All amino acid

color in this figure legend, the reader is referred to the web version of the article.)

http://platform.gisaid.org/
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(Xu et al., 2008) in complex with zanamivir (PDB id: 3B7E) was
selected from protein data bank. Binding site residues information
of 3B7E with regard to zanamivir was extracted using PDB Ligand
Explorer (Fig. 1).

2.3. Sequence alignment

Multiple sequence alignment (MSA) of all 86 sequences
collected from all six continents and 1918 pandemic H1N1 NA
protein (Swiss-Prot id: Q9IGQ6) was performed using the ClustalX
2.0.11 (Larkin et al., 2007). Redundant sequences with 100%
similarity were removed using the redundancy removal protocol of
the Jalview software (Waterhouse et al., 2009). To locate mutant
amino acid residues positions in the remaining H1N1 NA protein
sequences, pairwise alignments with the 1918 H1N1 neuramini-
dase protein sequence (Swiss-Prot id: Q9IGQ6) were performed
using the matcher program of mEMBOSS 6.0.1 (Rice et al., 2000),
with BLOSUM62 scoring matrix, gap opening and extension
penalty 14 and 4 respectively.
Fig. 2. Hierarchical clustering of NA protein from 34 representative countries / groups w

and pairwise alignment score. *G1 to G9 represents Groups shown in Table 1.
2.4. Mutation modeling

All amino acid residues in the non-redundant sequence dataset
were analyzed for any possible mutations using pairwise
alignment with the sequence of 1918 H1N1 NA protein. In order
to analyze the impact of single point mutation in the sequence data
collected, equal weightage were given for each mutation site
irrespective of amino acid residue type. For the mutant modeling,
several homologous structures identified from PDB (3B7E, 3BEQ,
1A4G, 1A4Q, 3CL2, 2HTQ, 2HT7, 2HT8, 3CKZ, 3CL2 and 2HU4),
Neuraminidase of A/Brevig Mission/1/1918 H1N1 strain in
complex with zanamivir (PDB ID: 3B7E) were selected as the best
template based on GA341 score function (Eramian et al., 2006) and
protein sequence similarity. Total 10 confirmations of mutant
model were generated for all the non-redundant sequences. We
used the ‘‘Build Mutant’’ protocol of Accelrys Discovery Studio that
automatically mutates specific residues and optimizes the
confirmation of neighboring residues that lie within a specified
cutoff radius of 4.5 Å. The protocol as described by Feyfant and co-
ith 1918 H1N1 NA (PDB id: 3B7E) sequence, based on DOPE score; PDF Total Energy



Fig. 3. Sketch of the model describing the process of infection, the immune response

and the effect of antiviral drugs. NKC accounts for natural killer cells, CI for

population of infected cells in the nasal epithelium, VI for the population of

intracellular viruses, VEC for the fraction of extracellular infection-active viruses and

D for the concentration of drug.

Fig. 4. Graphical representation of the ODE model describing the process of

infection. Solid lines represent rate processes. The symbols and refer to

synthesis and degradation processes respectively. The ‘‘clock’’ symbol , refers to a

time-delay in the considered process.
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workers optimizes all the atoms of mutated residues using a
scoring function which includes molecular mechanics energy
terms for bond distances; bond angles; dihedral angles; peptide
bond planarity; Lennard–Jones potential for non-bonded interac-
tion; homology derived restraints for main-chain and side-chain
dihedral angles; and statistical potential for non-bonded atom
interactions extracted from large set of known protein structures
(Feyfant et al., 2007). All the mutant models were further energy
minimized in order to relax the conformation and remove the
steric overlap that produces bad contacts for 400 steps of ‘‘Steepest
Descent’’ minimization followed by 1000 steps of ‘‘Conjugated
Gradient’’ minimization with CHARMm force field using ‘‘Minimi-
zation’’ protocols.

2.5. Model evaluation

All mutant model structures were evaluated using DOPE
scoring functions and PDF Total Energy. The DOPE score of a
protein can be viewed as a conformational energy which measures
the relative stability of a conformation with respect to other
conformations of the same protein. It can assist in choosing the
best model out of a set of predicted model structures of a protein
sequence. PDF Total Energy is the sum of the scoring function value
of all homology-derived pseudo-energy terms and stereo-chemical
pseudo-energy terms (Shen and Sali, 2006). Structures with lowest
DOPE score and PDF Total Energy were selected for individual
mutant model. For all the developed mutant models, hierarchical
clustering was performed using SPSS v14.0 considering three
parameters (1) alignment score by matcher with wild type NA
protein sequence; (2) DOPE score and (3) PDF Total Energy of
individual model (Fig. 2). All the generated models were also
superimposed to analyze root mean square deviation (RMSD) in
the structure.

2.6. Molecular docking

‘‘Dock Ligands (LigandFit)’’ protocol in Discovery Studio
(Accelrys, San Diego, CA) was used to analyze the impact of
mutations on the binding affinity of zanamivir in the same binding
cavity as it was in Neuraminidase of A/Brevig Mission/1/1918
H1N1 strain (PDB ID: 3B7E). A maximum of 10 poses of zanamivir
were generated in the binding cavity of each mutant models. These
poses were ranked according to DockScore [ = �(ligand/receptor
interaction energy + ligand internal energy)], Piecewise Linear
Potential 1 (Gehlhaar et al., 1995), Piecewise Linear Potential 2
(Gehlhaar et al., 1999), LigScore 1 and LigScore 2 (Krammer et al.,
2005), Potential of Mean Force (Muegge and Martin, 1999) and Jain
(Jain, 1996) empirical scoring function. Accordingly, based on the
binding efficacy of zanamivir with mutant models, the strains were
grouped as susceptible strains (SS); partially drug-resistant strains
(PRS) and fully drug-resistant strains (RS).

2.7. Mathematical modeling

In order to evaluate the effectiveness of the antiretroviral drug
zanamivir in different strains of H1N1, we derived, calibrated and
analyzed a mathematical model for the H1N1 infection. A
schematic representation of the model appears in Fig. 3. Here,
the process of infection, the immune response and the effect of
drugs are represented in a simplified manner. We notice that drugs
are external independent regulators of the system, while the
immune response constitutes a delayed saturated-like feedback-
loop system. In order to derive our model in ordinary differential
equations, previously published models (Bocharov and Romanyu-
kha, 1994; Beauchemin et al., 2005; Baccam et al., 2006; Alexander
et al., 2008) developed to investigate similar infection systems
were retrieved, modified and extended to construct our model. The
result is an ODE model in kinetic rate equations (Fig. 4) with five
differential equations describing the critical steps in the processes
of virus infection and drug-mediated virus deactivation and its
effect on the dynamics of the infectious process. Variables included
in the model are: population of intracellular viruses (VI),
population of extracellular viruses (VEC) capable of infecting
new cells, population of deactivated viruses (VB) after drug
therapy, population of infected epithelial cells (CI), population of



Fig. 5. Predictive simulations properties computed are; (1) intensity of peak of infection and (2) the duration of the infection.

Table 1
Isolates from different countries with identical NA protein sequence are grouped as

G1 to G9.

Group Representative countries

G1 Argentina, New Caledonia

G2 Bulgaria, Costa Rica, Egypt, Hungary, India, Kuwait,

Latvia, Nicaragua, Peru, Romania, Slovakia, Slovenia

G3 Cote d’Ivoire, Russia

G4 Czech Republic, Nepal, Qatar

G5 Guadeloupe, China

G6 Guam, Panama

G7 Philippines, Brazil, Finland, French Guinea, Guatemala,

Japan, Kazakhstan, Martinique, Taiwan, Vietnam,

G8 Thailand, Canada, Chile, Denmark, El Salvador, England,

Germany, Israel, Mexico, Netherland, New Zealand,

Portugal, South Korea, Sweden, USA

G9 Venezuela, Honduras, Singapore, Uruguay, Ukraine
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recruited natural killer cells (NKC) and administration of drugs (D).
In our model D was assumed to be a tunable time-dependent
model parameter and for the sake of simplicity pharmaco-kinetics
of the drug has not been included. The model focuses on the
analysis of how specific mutations of NA proteins in different
strains of the virus affect the efficacy of the treatment based on the
administration of zanamivir. The ODE equations integrated with
the mathematical model are described in Appendix A along with
the list of parameters. The model was calibrated by using
experimental data extracted from Baccam and coworkers under
three different experimental conditions (Appendix B) concerning
administration of zanamivir (Baccam et al., 2006).

2.8. Model simulation

The model was further used to perform a series of predictive
computational simulations accounting for the effect of different
zanamivir administration patterns to different patient popula-
tions concerning the strength of their immune system and the
existence of mutations in the virus able to resist the drug therapy.
Three conditions where simulations were performed are: SS; PRS;
and RS. These three conditions were simulated by tuning the
value of the parameter accounting for drug-virus binding kDB

ðSS : kDB ¼ k0
DB; kRA ¼ k0

RA; RS : kDB ¼ 0; kRA ¼ 0; PRS : kDB ¼ 0:1�
k0

DB; kRA ¼ k0
RAÞ. For our simulations we further tuned the

parameters accounting for delay in the administration of
zanamivir (t 2 [0, 100] h) and the strength on the immune
system in terms of efficient recruitment of natural killer cells
ðkREC 2 ½0:1;10� � k0

RECOÞ. Predictive simulations for the dynamics
of virus infection under the experimental conditions specified by
tuned parameters were run in SBtoolbox2 for Matlab, and for each
condition, the simulated intensity of peak and the duration of the
infection were computed according to the description in Fig. 5.

3. Results

Analysis of binding interaction between 1918 H1N1NA with
zanamivir (PDB id: 3B7E) showed that amino acid residues Arg118,
Asp151, Arg152, Arg156, Glu227 and Arg371 were involved in
hydrogen bond interactions; Glu119, Ile222 and Ser246 in
hydrophobic interactions; while Trp178, Glu276, Arg292 and
Tyr406 were participating in both hydrogen bond and hydrophobic
interactions with the drug (Fig. 1). From the global sequence
alignment of the 1918 H1N1 NA protein sequence with the NA
from 2009 pandemic H1N1 isolates from all 6 continents, a total of
nine groups/clusters were identified, having more than one
sequence with 100% sequence similarity. The sequence data were
grouped using redundancy removal protocol available in Jalview
software. These groups along with country name are shown in
Table 1 and cover 53 out of 78 sequences selected initially. The
largest group (G8) contains 15 countries, distributed throughout
the globe (Fig. 7).

Three dimensional structures of all 25 variants from different
countries (with less than 100% sequence similarity) and 9 groups
(represented as G1 to G9) were developed using 1918 H1N1 NA
(PDB id: 3B7E) as a template structure. This structure is already
used by several researchers for homology modeling followed by
molecular dynamics simulation studies of different inhibitors
targeting neuraminidase (Wang et al., 2010, 2009; Du et al., 2010).
All 34 models (25 variants + 9 groups) were evaluated using DOPE
score; PDF Total Energy and pairwise alignment score (Table 2) and
the hierarchical clustering based on these parameters is depicted
in Fig. 2.

RMSD matrix generated after structural superimposition based
on C-alpha atom of all amino acid residues from 34 mutant models
with 1918 H1N1 NA is shown in Supplementary Fig. 1. A total of 6
clusters with identical NA protein structures (RMSD 0.00) were
identified after structure superimpositions. These includes (1)
Mangolia, Bangladesh, Combodia; (2) Soloman Island, Indonesia;
(3) Nigeria, Kenya, G3; (4) Malaysia, Lebanon; (5) Macau, Ecuador,
Iraq; and (6) G1, G9.

All mutant structures were docked with zanamivir using ‘‘Dock
Ligand (LigandFit)’’ protocol available in Accelrys Discovery Studio



Table 2
DOPE score, PDF physical energy and alignment score of mutant models with wild-

type 3B7E.

Country Dope score PDF physical

energy

Alignment

score

G1 �45333.59 �10478.83 1901

G2 �45963.1 �10805.97 1918

G3 �45499.52 �9892.81 1918

G4 �45713.37 �10320.1 1918

G5 �45173.22 �9831.42 1900

G6 �45377.79 �10406.23 1893

G7 �45283.39 �10381.74 1898

G8 �44968.3 �10556.01 1959

G9 �45333.59 �10478.83 1900

Australia �44924.77 �10510.12 1962

Austria �45242.42 �10394.28 1897

Bangladesh �45312.86 �10374.6 1901

Cambodia �45312.86 �10374.6 1895

Ecuador �45505.08 �10279.1 1913

Fiji �44895.1 �10484.26 1926

Greece �45853.44 �10574.78 1916

Indonesia �44911.94 �10106.84 1909

Iraq �45505.08 �10279.1 1917

Italy �44849.1 �10013.34 1910

Kenya �45499.52 �9892.81 1913

Lebanon �45201.7 �10388.44 1917

Macau �45505.08 �10279.1 1905

Malaysia �45201.7 �10388.44 1919

Mongolia �45312.86 �10374.6 1904

Montserrat �45906.19 �10247.6 1895

Morocco �44307.48 �10387.43 1914

Myanmar �44794.01 �10080.57 1919

Nigeria �45499.52 �9892.81 1902

Norway �45077.55 �10212.6 1909

Paraguay �45328.75 �10463.63 1913

Puerto Rico �45624.7 �10519.92 2000

Solomon Island �44911.94 �10106.84 1912

South Africa �45571.83 �10312.41 1896

Tonga �45194.23 �10562.29 1924

G1–G9 represents groups shown in Table 1.

Table 3
Comparison of binding affinity of zanamivir drug to the mutant models and 1918

H1N1 (3B7E) NA protein based on DockScore.

Strain type Country DockScore

Susceptible strain (SS)

Morocco 118.29

Norway 108.546

Indonesia 106.015

Iraq 105.57

Solomon Island 105.118

G4 104.98

Macau 104.887

G7 104.386

1918 H1N1 NA 3B7E 104.029

Partially drug-resistant

strain (PRS)

Australia 103.383

G1 102.21

G9 102.21

Ecuador 102.1

G8 102.068

Austria 101.661

Myanmar 101.028

Italy 101.004

Bangladesh 100.518

Paraguay 100.351

Peurto Rico 98.61

Mongolia 96.655

South Africa 95.021

Cambodia 94.909

Malaysia 93.168

Lebanon 89.482

Greece 81.232

Tonga 79.078

G6 73.035

Fully drug-resistant

strain (RS)

G2 No ligand docked

G3 No ligand docked

G5 No ligand docked

Fiji No ligand docked

Kenya No ligand docked

Montserrat No ligand docked

Nigeria No ligand docked

G1–G9 represents groups shown in Table 1.
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to indentify the impact of mutations in H1N1 NA protein on the
binding affinity of zanamivir. The binding affinity is measured in
the form of various empirical scoring functions. All the complexes
are arranged in the descending order of DockScore (Table 3).
DockScore of 1918 H1N1 NA and zanamivir was assumed as
threshold value, above which the strains were enunciated as
susceptible strains (SS) and below the threshold as partially drug-
resistant strains (PRS) or full drug-resistant strains (RS).

Processes described in the dynamic model are concerning (i)
virus dynamics: virus inoculation, virus infection-mediated
proliferation, virus natural degradation, virus extracellular activa-
tion and virus deactivation by antiviral drugs targeting critical
virus protein NA; (ii) epithelial cell population dynamics: cell
turnover, virus mediated cell infection and natural killer mediated
destruction; (iii) natural killer cells (NKC): infected cell mediated
recruitment, virus mediated infection and destruction of NKC and
NKC delocalisation after the end of the infection (Fig. 4).

Analysis of effectiveness of zanamivir on SS, PRS and RS are
depicted in Fig. 6. For fully drug-resistant strains (Fig. 6C),
administration of drugs does not affect the dynamics of infection,
but the efficiency in the recruitment of NK cells do drastically affect
the fate of the infectious process. In this way, the model suggests
that for patients with a weak immune system (kREC� 1), the
infection may render critical both in the intensity of the viral
charge reached at the peak and the duration of the infection and
the condition may become fatal. In case of SS where the virus is
susceptible to the drug (Fig. 6A), the model suggests that
individuals with a healthy immune system may overcome the
infection even in absence of treatment; in that case the early drug
administration may reduce the intensity in the peak of infection.
For individual with weak immune system, antiviral drugs may
effectively mitigate the infection for early drug administration, but
it may be insufficient to avoid intense viral charge in case of an
excessive delay in the drug administration. Interesting enough, the
simulations show a rather irregular pattern for the duration of the
infection in the susceptible-type, with short recovery time for
weak immune system and intermediate drug administration time
and longer periods for extreme delay in the administration time.
The most interesting situation happens for PRS to the antiviral drug
(Fig. 6B). In this case, the simulations suggest that early drug
administration help reducing the viral charge quicker in all the
immune conditions, but may become insufficient with a long delay
in drug administration in case of individuals with weak immune
system. In this case, critical infectious conditions may be fulfilled
for weak individuals and extremely delay in the drug administra-
tion (more than 72 h).

4. Discussion

Zanamivir works by binding with the viral protein NA and
impeding the receptor perforation. Mutations in NA residues of
H1N1 strains are so momentous that it may lead to ineffective or
no binding of zanamivir with some mutants conferring resistance.
Some of the current methods for monitoring drug resistance
include phenotypic and genotypic analysis of neuraminidase gene,
pyrosequencing (Bright et al., 2006), or flow cytometric analysis of
virus-infected cells (McSharry et al., 2004), all of which are costly
and time-consuming. Global surveillance coordinated by the in
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silico studies have shown the evidence of considerable differences
in the ability of resistance in isolates collected from different
geographical regions. Some viruses with mutations may become
resistant to the drug because of conformational rearrangement of
Fig. 6. Predictive simulations: simulated intensity of viral infection peak and the duration

(B) with H1N1 strains with partial resistant to drug; and (C) strains that are fully resis
residues around drug binding sites. Patients infected with such
strains of the virus show resistance against the same drug and
unknowingly spread the resistant strain globally when visiting
several countries. Strict systematic monitoring of mutations in
of the infection were computed (A) with H1N1 strains that are susceptible to drug;

tant to drug.



Fig. 7. Geographical distributions of the H1N1 virus based on NA protein sequence similarity. A total of nine groups formed and are represented here by different colors. All

representative countries with similar sequences are also linked. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

the article.)
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amino acid residues around binding cavity is necessary because of
the increasing use of NA inhibitor and to prevent the global
distribution of resistant strains.

For most of the samples investigated in the present study,
mutations in NA proteins of 2009 pandemic H1N1 strains were
clustered adjacent to the zanamivir binding site of the 1918
pandemic H1N1 NA protein, this suggests the resistivity of the
virus to the drug by conformational reshuffling of the residues in
the binding site. Out of the 34 mutants investigated, mutants
isolated form group 2, group 3, group 5, Fiji, Kenya, Montserrat and
Nigeria were not found interacting with the drug. Thr157Ala,
Fig. 8. Structural superimpositions clearly indicate distortion in the binding site of zanam

countries in G2 (purple) and G5 (red), where zanamivir did not dock, are superimposed a

participating in the zanamivir interaction are labeled. (For interpretation of the references
Asn221Gln, Gly248Lys, Ile349Val and Ile427Val mutations in
group 2 and 3, considerably changed the arrangement of residues
in binding site that might be the cause of drug ineffectiveness in
these strains. Similarly, in group 5, Thr157Ala, Asn221Gln,
Gly248Lys, His274Tyr and Ile427Val mutations resulted in
complete resistant to zanamivir. Thr157Ala, Asn221Arg,
Asn347Asp, Ile349Val in Fiji; Thr157Ala, Gly248Lys, Asn347Asp,
Ile349Val, Ile427Val in Kenya; Thr157Ala, Asn221Gln, Ser246Asn,
Gln248Lys, His274Tyr, Ile349Val, Ile427Val in Montserrat and
Thr157Ala, Asn221Gln, Gly248Lys, His274Tyr, Ile349Val, Ile427Val
in Nigeria isolates were also responsible for non interaction of NA
ivir (blue) due to the mutations in key amino acid residues. For simplification, only

nd shown here over 1918 H1N1 NA (PDB id: 1B7E; green color). Amino acid residues

to color in this figure legend, the reader is referred to the web version of the article.)
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with zanamivir. The structure superimposition of key amino acid
residues participating in the zanamivir binding site, clearly
indicates the impact of these point mutations, resulting in
ineffectiveness of the drug (Fig. 8). Docking studies are thus
nearly indispensable for analyzing the noticeable changes in
zanamivir interactions with mutant models. Variations in Dock-
Score suggest the effect of binding site residues and nearby
residues mutations on drug binding capacity.

The mathematical model, accounting for the dynamics of RS;
PRS and SS, predicts that an early drug administration is required
for a patient with weak immune system against infection for all the
virus strains, while for a patient with strong immune system,
delayed drug administration is possible if infected with susceptible
strain. However, an early drug administration is required for
infection with partially resistant viral strain.

5. Conclusion

Presently, computational docking and molecular interaction
studies play important roles in the rapid assessment and
validations of drug candidates. However, to understand the detail
insight of disease mechanism and drug resistance, use of
mathematical modeling is inevitable. In the present work, we
integrated computational modeling and docking techniques with
the mathematical model in order to analyze the effectiveness of
antiviral therapy in case of H1N1 influenza infection where
antigenic drift is a common process to develop the drug resistance.
In silico studies are important to immediately raise the alarm
against the ineffectiveness of antiviral therapy, if any, and suggest
a new way to combat the deadly viral diseases. The mathematical
model accounting for the dynamics of the virus with respect to the
mutations in NA proteins and their efficacy with antiretroviral
drugs can be used in prospective clinical studies, to ascertain
whether there are differential long term outcomes and treatment
Fig. A1. Time course of data points (dots) versus model predictions (solid lines) for the total

(2006). Black: no antiviral treatment applied; blue: antiviral treatment applied after 50 h; re

fits for the data in the logarithmic scale. (For interpretation of the references to color in
responses between patients infected with the SS, PRS or RS, that
were originated due to mutations.
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Appendix A

Virus populations

dV I

dt
¼ ksyn � CIðt � t1Þ � kDV � V I � kVA � V I � kDB � D � V I þ kRA � VB

dVEC

dt
¼ kVA � V I � kDV � VEC

dVB

dt
¼ kDB � D � V I � kRA � VB � kDV � VB

Plasma membrane receptor dynamics

dCI

dt
¼ kIN � VECðt � t2Þ � kFC � NKC � CI � kAPO � V I � CI

dNKC

dt
¼ kREC � CIðt � t3Þ � kDR � NKC� kVE � VEC � NKC

Where VI is population of infected cells capable of synthesizing
intracellular viruses; VEC is population of extracellular active
viruses; VB is population of deactivated viruses after using antiviral
drug; CI is population of infected epithelial cells; NKC are
population of recruited natural killer cells.
viral titer in the three experimental conditions described and essayed in Baccam et al.

d: antiviral administered since t = 0 h. Top: data fits for the data in linear scale; Bottom:

this figure legend, the reader is referred to the web version of the article.)



Fig. A2. Correlation matrix for the model parameters. Here, 1 represents the

strongest correlation between a pair of parameters (color white), while 0 represents

no correlation between them (color black).
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Different parameters used in ODE are as follows:

ksyn: synthesis rate of VI mediated by CI

kVA: activation of VI

kRA: transformation rate from VB to VI

kFC: degradation rate of CI mediated by NKC
kREC: synthesis rate of VEC mediated by CI

kVE: degradation rate of NKC mediated by VEC

kDV: basal degradation of VI

kDB: deactivation of VI by drug (D)
kIN: synthesis rate of CI mediated by VEC

kAPO: degradation rate of CI mediated by VI

kDR: basal degradation rate of NKC
D: administration of drugs
t1: delay of process depicted by ksyn

t2: delay of process depicted by kIN

t3: delay of process depicted by kREC

Appendix B

The mathematical model to analyze the effectiveness of zanamivir

was calibrated using experimental data extracted from Baccam et al.

(2006) for three different experimental conditions concerning

administration of drugs. Prior to parameter estimation we defined

physiologically feasible intervals for some parameters based on

published biomedical information (kDV (�6 h), kAPO (6–12 h), t1 and

t3 (�6 h) and t2 (6–12 h)) and set the rest parameters in a free

interval. Parameter estimation was performed using parameter

estimation functions implemented in SBtoolbox 2 (Schmidt and

Jirstrand, 2006) for Matlab (Mathworks, MA) running in a standard PC

under Windows XP. The computing time was in the order of minutes

for each parameter estimation round. Estimated values for the

parameters are listed in the table below:

Model parameter values.

Parameter Value Parameter Value

ksyn 1.04164 T 10S5 hS1 kDV 0.3 hS1

kVA 0.00628761 hS1 kDB 1.74233 hS1

kRA 0.000343459 hS1 kIN 804106 hS1

kFC 4.37084 T 10S5 hS1 kAPO 0.0478 hS1 (6–12 h)

kREC 6.67951 T 10S5 hS1 kDR 1.10021 T 10S5 hS1

kVE 1.00015 T 10S5 hS1 t1 6 h

t2 12–48 h t3 6 h

Appendix Fig. A1 shows the results of the data fitting problem for

the best solution. We notice that the model predictions are in good

agreement with the experimental data. However, the fitting is not

perfect, which we think relate to (a) the structural simplicity of the

derived model and (b) the intrinsic variability in the experimental

data used.

To further obtain insight into the confidence in the estimated

parameters and the correlations between them, we randomly

uniformly perturbed the parameter values in the interval from tenth

to ten folder of their estimated values [10S1, 101] and use the generated

parameter values to repeat the parameter estimation for 2000 times

according to the procedure described in SBtoolbox2 (www.sbtool-

box2.org). Among these 2000 estimations we sort out different

combinations of the parameters by using which the model can reach

around the minimum cost function. Based on the these different

combinations of parameter values, Appendix Fig. A2 plots out the

absolute correlation matrix for the model parameters, in which 1

represents the strongest correlation between a pair of parameters and
0 represents no correlation between them. As we can see, the model

performs properly concerning parameter correlation and the param-

eters are poorly correlated. The exception is the couple of parameters

kDV and kDB, which shows correlation. We notice that this has no effect

in the performance of the model given that the value of kDV was

assigned prior to estimation of the other parameters and has therefore

no influence in the identifiability of other model parameters.

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.meegid.2011.03.018.
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